
Preface

Quantum mechanics provides a striking and counterintuitive observation in

that it is easier to describe a quantum whole than its constituent parts. In

other words, there is more uncertainty about quantum subsystems than about

the total system composed of the quantum subsystems. This observation

suggests that there is more to the idea of ”structure” (decomposition into

parts, subsystems) in the quantum world than there is in the classical world.

For example, we can smash a rock into little bits, and each of those bits

continues to follow classical physics, but ultimately when we smash those

bits to the quantum scale we no longer see ”material” so much as we see

something that is better described as ”pure behavior”. And this behavior is so

fast and fleeting that we have only statistical methods with which to continue

to presume that there is ”material stuff”. Odd as this is, classically, Quantum

Mechanics is so accurate that we have to presume that the statistical methods

have a lock on something very real. In experiments and in math it is possible

to select and or to describe different and equivalent possible views of the

same thing. The maths of quantum physics are at a point where they have

captured the lessons of many different experiments and we can most readily

describe these views in terms of mathematical decomposition ”structures”

that achieve the whole.

Ultimately questions arise such as: Is there a unique fundamental structure

of a composite quantum system (is one view any more ”real” or ’better”

than any other)? How do classical structures (and intuition) appear from the

quantum substrate? Can the structural variations available in the quantum

world be of any practical use that is not known to classical physics? These

are the main questions raised in this book. Some of the answers that we

provide are so far only partial. Nevertheless, the results suggest that the

topic of ”quantum structures” will be of significant interest to fundamental

physics going forward.

The bulk of the results presented here have been obtained by the authors over
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the last seven years. Emphasis is placed on the appearance of ”structure” in

different contexts and particular attention is given to the distinction between

the classical and quantum mechanical concept of structure. The contents are

arranged so as to provide a coherent and self contained reading. We have

endeavored to include enough supplemental material to be ”reader-friendly”,

while of course providing references for more detailed investigation of the

topics covered.

We benefited much from discussions and encouragement that came from Allen

Francom, Nate Harshman, David Steglet, Stephen P. King, Hitoshi Kitada

and Dejan Raković. Some lucid observations provided by Allen Francom in

a few last years have constantly enriched our inspiration and significantly

influenced our thinking and the view of the quantum world.

Nǐs/Kragujevac, Summer 2013 J. Jeknić Dugić

M. Arsenijević

M. Dugić
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Abbreviations

BP – Brownian particle

ChM – Chemical model [of molecule]

CM – Center of mass

DISD – Decoherence-induced suppression of decoherence

EM – Electromagnetic [field]

ER – Entanglement relativity

lhs –Left hand side [of an equation]

LOCC – Local operations and classical communication

PFP – Protein folding problem

POD – Parallel occurrence of decoherence

QBM – Quantum Brownian motion

QCM – Quantum chemistry model [of molecule]

QCR – Quantum correlations relativity

QDR – Quantum discord relativity

QRF – Quantum reference frame

RF – Reference frame

rhs–Right hand side [of an equation]

SSM – Solid-state model [of molecule]
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Chapter 1

Introduction

In non-relativistic physics, ”system” is defined by the set of its degrees of

freedom (xi) and the related conjugate momentums (pi), as well as by the

set of the parameters (such as the mass, electric charge etc.). If the system

is not elementary, it’s said to be ”composite”, i.e. to be decomposable into

parts (subsystems), which define the system’s structure. Realistic systems,

ranging from mesons to the Universe as a whole, are–composite.

In classical physics, ”structure” is pre-defined and assumed to be basic. Sub-

systems of a composite system can be further decomposed (”fine-graining”),

or grouped (”coarse-graining”), while the other variations of the system’s

structure are often regarded as physically artificial–a mathematical artifact.

However, in the quantum (non-relativistic) theory, the things look differ-

ent. Solution to the quantum hydrogen atom (HA) Schrödinger equation is

a cornerstone of the quantum theory that provides an outstanding observa-

tion. Actually, the classically paradoxical discrete energy-spectrums, which

are experimentally observed, refer precisely to the atomic internal degrees of

freedom (denoted R).

Only recently some elaborate attempts of describing HA as ”electron+proton”

(e+p) system have been made (Tomassini et al 1998, Dugić and Jeknić 2006,

Dugić and Jeknić-Dugić 2008, Jeknić-Dugić et al 2012). The conclusions are

classically non-describable. Actually, as distinct from the atomic ”center-of-

mass+relative position” (CM+R) structure, the e+p structure is endowed by
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quantum entanglement and cannot provide a proper theoretical explanation

of the experimental evidence of the discrete atomic spectra1.

On the other hand, the atomic CM and R systems appear directly accessible

in the realistic physical situations such as e.g. atomic cooling, Bose conden-

sation, interference, atomic lithography etc. The atomic CM and R formal

subsystems are exactly decoupled from each other and (for the atom consid-

ered as a ”closed” quantum system) can have the quantum states of their

own–independent of each other. This is an important observation, which

suggests that we can ”directly” observe the (sub)systems only if there is the

(sub)systems’ individuality. However, the choice of such ”preferred” degrees

of freedom (i.e. of the preferred structure) of a composite system is not es-

tablished by any general rule or condition. Is there such a rule or condition?

If there is such a rule or condition, what might be its/their kinematic or dy-

namic quantum-mechanical basis? In other words: what constitutes a ”sys-

tem” accessible for an observer? These are the main questions of interest for

us that are occasionally posed in the contemporary physics-research papers,

see e.g. (Dugić and Jeknić 2006, Dugić and Jeknić-Dugić 2008, Harshman

2012a, Fel’dman and Zenchuk 2012, Lychkovskiy 2013).

These questions are of universal interest and importance in quantum theory,

independently of the model of the composite system, which can be open or

isolated, finite- or infinite-dimensional. This is of interest not only for the

foundations of quantum theory but also for certain applications as well as

for some interpretational reasons. The fact that this topic is as yet weakly

appreciated may be a consequence of the classical prejudice and intuition, as

well as of the widespread scientific attitude, which is described by Zurek’s

(Zurek 2003):

”Quantum mechanics has been to date, by and large, presented in a man-

ner that reflects its historical development. That is, Bohr’s planetary model

1See eq.(21) below. An up to date presentation can be found in (Jeknić-Dugić et al
2012).

2



of the atom is still often the point of departure, Hamilton-Jacobi equations

are used to ”derive” the Schrödinger equation, and an oversimplified version

of the quantum-classical relationship (attributed to Bohr, but generally not

doing justice to his much more sophisticated views) with the correspondence

principle, kinship of commutators and Poisson brackets, the Ehrenfest the-

orem, some version of the Copenhagen interpretation, and other evidence

that quantum theory is really not all that different from classical–especially

when systems of interest become macroscopic, and all one cares about are

averages–is presented.”

In different applications of quantum theory, numerous ”one-particle” (i.e.

noninteracting particles) models–which include the ”virtual particles”–have

been developed in order to avoid the difficulties in description of the many-

particle systems. However, there is a caveat2: there is not any guarantee that

the results can be straightforwardly interpreted in terms of the ”original”

constituent particles. It seems that this subtle point remained virtually un-

noticed until recently (Dugić and Jeknić 2006, Dugić and Jeknić-Dugić 2008,

Stokes et al 2012, Fel’dman and Zenchuk 2012, Harshman 2012a, Jeknić-

Dugić et al 2012, Dugić et al 2013, Arsenijević et al 2013a,b, Lychkovskiy

2013). Presence of quantum correlations and related lack of classical indi-

viduality of quantum subsystems precludes a straightforward transfer of the

results between the different structures of the composite system. Having this

in mind, careful analysis of the composite system’s structures and their be-

haviors becomes an emerging need of the modern quantum (non-relativistic)

theory. This way comes both a fresh insight into well known methods and

their results as well as emergence of a new methodological basis of quantum

theory. As a matter of fact, we are yet to start working in that direction. So,

the main purpose of this book is to try to overcome the classical prejudice,

and to promote a fresh view of the quantum world.

The contents of this book is based mainly (but not exclusively) on the authors’

2See also the arguments in (Zeh 2005).
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contributions that are made in approximately the last seven years. It tackles

all of the above-posed questions and carefully emphasizes subtlety of the topic

of quantum structures. In Chapter 2 we provide a general conceptual basis for

the remainder of the book. In Chapter 3, we introduce relativity of the con-

cept of ”quantum [non-classical] correlations” in composite quantum (closed

or open) systems. Both the quantum entanglement and the quantum discord

relativity are presented in detail. In Chapter 4 we give some details regarding

the different molecule structures in use in the different fields. We emphasize a

new qualitative proposal of interest for resolving the long-standing problems

known as the Hund’s paradox (Hund 1927) in chemistry, and the Levinthal

paradox (or the ”protein folding” problem), (Levinthal 1968), in the founda-

tions of the macro-molecules dynamics (such as e.g. molecular recognition).

In Chapter 5 we highlight some experimental evidence, which clearly stresses

physical importance of the ”non-fundamental” structure of the atomic and

molecule species. Chapter 6 is one of the central parts of this book. It tack-

les the above-posed questions regarding the Universe as the isolated (closed)

quantum system. There we present a recently obtained result of the ”parallel

occurrence of decoherence” for a specific model of the quantum Brownian mo-

tion. Physically, the results are striking: the model-Universe hosts some mu-

tually irreducible and, physically and information-theoretically, mutually in-

dependent (autonomous), simultaneously evolving-in-time structures, which

are endowed by the decoherence-induced quasi-classical structures. Some in-

terpretational aspects of our findings, as well as the important issues raised

by the ”quantum reference frame”, are the subject of Chapter 8. In Chap-

ter 7, we provide a few models, which strongly suggest the following answer

to the above questions for open systems: environment singles out the ”pre-

ferred” (i.e. directly accessible for an observer) structure of the composite

system. This finding can be described (see also Harshman 2012a) by the

condition of the minimum quantum correlations in the preferred structure.

Chapter 9 collects the questions, the offered answers and their subtleties in
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one place. Regarding application of our results, we hope for prospects an-

ticipated in (Fel’dman and Zenchuk 2012): ”Using different bases, we may

choose the preferable behavior of quantum correlations which allows a given

quantum system to be more flexible in applications.”

To ease the exposition, we provide Supplement, which completes and par-

tially, technically, extends what is told in the body text.
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Chapter 2

The transformations of variables

Transformations of variables are ubiquitous in mathematical methods and

manipulations. They are so common that sometimes are not explicitly dis-

tinguished. For instance, the equality:

cos(α + β) sin(α− β) = sinα cosα− sin β cos β (1)

involves a linear transformation of the set {α, β} into the set {u, v}, where
u = α+ β and v = α− β. In the spirit of our considerations, eq.(1) reads as:

cosu sin v = f1(α)g1(β) + f2(α)g2(β); (2)

f1(α) = sinα cosα, f2(α) = −1, g1(β) = 1, g2(β) = sin β cos β, while α, β ∈
[0, 2π].

Product of two Gaussian functions, F (x1) = exp{−x21/2} and F (x2) =

exp{−x22/2}:
F (x1)F (x2) = F (x−)F (x+), (3)

for the new variables x± = (x1 ± x2)/
√
2 and xi ∈ (−∞,∞), i = 1, 2. As it

can be easily shown: for Gaussian functions, in general, there are also the

sums like in eq.(2)–there is more than one term on at least one side of eq.(3).

The linear canonical transformations are of general use in physics. For a

pair of one-dimensional systems described by the respective position and
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momentum variables, (x1, p1) and (x2, p2), one can define the center of mass

(CM) and the ”relative position”(R) degrees of freedom:

XCM =
m1x1 +m2x2

M
, rR = x1 − x2, (4)

wheremi, i = 1, 2, are the masses andM = m1+m2. The new degrees of free-

dom,XCM and rR, define the respective conjugate momentums, PCM = p1+p2

and pR = (m2p1−m1p2)/M . Typical physical interactions are distance depen-

dent, V (|x1− x2|) for the pair of systems 1 and 2. Then the transformations

of variables, {x1, x2} → {XCM , rR}, give rise to the variables separation.

The total Hamiltonian function, H, does not involve any coupling of the new

variables:

p21
2m1

+
p22
2m2

+ V (|x1 − x2|) = H =
P 2
CM

2M
+
p2R
2µ

+ V (|rR|), (5)

where µ = (m−1
1 + m−1

2 )−1 is the ”reduced mass”. Separation of the new

variables (of the CM and the R formal systems) is at the root of exact

solvability of the classical two-body problem3.

Mathematical spirit of the transformations of variables can blur their physical

contents. The transformations of variables are often considered as a purely

mathematical tool, a mathematical artifact not having any physical meaning.

This classical prejudice is going to be challenged, and then removed, in the

quantum mechanical context, starting from the next section.

2.1 Classical physics prejudice on the transformations of variables

Let us start with the ”obviously” correct observations. Center of mass for the

pair ”the Earth and the Venus” is an empty point in space, not a physical

object. That is, for the classical, macroscopic bodies, the transformations

of variables are simply mathematical artifacts4. For this reason, the results

3Which is illustrated in Chapter 1 by the hydrogen atom.
4Sometimes it is said that the ”relative positions” in eq.(4) do not have the same physical
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presented via the ”artificial” (the new) variables (XCM and rR), are typically

transformed and presented via the ”realistic” (the original) variables (x1 and

x2).

As we show in Section 8.2, this classical interpretation of the transformations

of variables is quantum mechanically sound. However, its extrapolation may

be misleading. As an illustration, we borrow from (Dieks 1998):

”This suggests the following necessary condition for factorizations to cor-

respond to physically real systems. The factor Hilbert spaces should carry a

representation of the space-time group... in the same way as the factor spaces

of the original factorization, with the usual identification of generators of the

space-time group and dynamical variables.”

It is suggested above that the [linear canonical] transformations not preserv-

ing the space-time symmetry are not physically ”real”. The new degrees of

freedom are required to be describable by the exactly the same physics (sym-

metries and the particles interactions) as the original ones. However, the

later is not fulfilled already for the CM +R system, the rhs of eq.(5), which,

in turn, is the standard quantum mechanical model of the hydrogen atom as

well as of the whole of atomic physics and quantum chemistry (see Chapter

5 for some phenomenological facts). Requiring the same symmetry rules for

the ”new” variables is mathematically misleading–the symmetry rules for the

new variables cannot be chosen but are (uniquely) defined (induced) by the

symmetry rules for the original ones (Anderson 1993, 1994, Harshman 2012b,

Manzano et al 2013).

So we conclude: Every set of the physical degrees of freedom is formally

equal to any other–i.e. it’s subject of the same formalism. On the other

hand, physical reality of the degrees of freedom is a separate issue that, as

we show starting from Chapter 3, is a bit more subtle than in the classi-

meaning as the original degrees of freedom. To this end, it is important to stress: all the
variables linked mutually via some proper variables transformations have the same mathe-
matical meaning. They are all vectors in the same vector space thus providing the universal
mathematical basis of the physical considerations.
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cal physics context5. To this end, phenomenology plays substantial role–the

purely theoretical analysis is not sufficient (see Section 8.2).

2.2. Classifications of the canonical transformations

In the remainder of this book, we stick to the linear canonical transformations

(LCTs)6.

For a composite system C defined by the conjugate variables, xi, pj, where

the commutator [xi, pj] = ıh̄δij, the LCTs are formally defined:

ξm =
∑

i

cimxi +
∑

n

djmpj, πn =
∑

i

c′inxi +
∑

n

d′jnpj (6)

while [ξm, πn] = ıh̄δmn. The constants appearing in eq.(6) are mutually con-

strained; for an example, see eq.(127) below. In a slightly different form,

one can introduce analogous expressions for the finite-dimensional systems

(e.g. the qubit systems) or regarding the Fock space (e.g. via the Bogoliubov

transformations)–see Supplement.

Def.2.1: By structure of a composite system it is assumed the set of the

composite system’s degrees of freedom.

This descriptive terminology should ease the exposition as well as to support

physical intuition. e.g. In eq.(6) appear two structures, S = {xi, pj} and

S ′ = {ξm, πn}, that refer to one and the same composite system, C, and are

mutually related by some LCTs.

2.2.1 Some classifications of the LCTs and structures

We introduce a few criteria for classification of the LCTs (and of the related

structures) of interest for our considerations. All of them apply to the finite-

as well as the infinite-dimensional (the continuous variable), open or closed,

classical or quantum systems.

5Of course, mathematical consistency, as described above, is required.
6For non-canonical transformations see e.g. (Lychkovskiy 2013).
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While an LCT induces a structure, we will use the same terminology for

both LCTs and structures.

(A) If no ”new” variable, in eq.(6), can be expressed by more than one ”old”

(”original”) variable, we refer to such transformations (and the related struc-

tures) as trivial. Otherwise they are nontrivial. Regarding the trivial LCTs,

we distinguish the particles re-ordering or permutations, grouping of the par-

ticles (the ”coarse graining” of the composite system’s structure). In a sim-

plified form, the later can be illustrated7:

1 + 2 + 3→ 1 + (2 + 3) ≡ 1 + S, (7)

where the bipartite system S = 2+ 3; if the 2 system represents the electron

and the 3 system represents the proton, then S may be the hydrogen atom. So

for the total system, C, the following two structures are distinguished above:

S = {1, 2, 3}, which is tripartite, and the bipartite structure S ′ = {1, S}. An
example of non-trivial LCTs is given by eq.(4).

(B) LCTs are global if they target all degrees of freedom of a composite

system. Otherwise, they are local (non-global). As it can be easily shown,

global/local character for a pair of structures is not transitive. If S2 is local

relative to both, S1 and S3, S1 and S3 may still be global to each other.

Similarly, if S2 is global relative to both, S1 and S3, S1 and S3 may still be

local to each other. This relation for a pair of structures is symmetric: if S1
is global (or local) relative to S2, then also S2 is global (local) to S1.
(C) If the ”fine graining” (i.e. splitting into smaller parts) of a structure S
can lead to a structure S ′, then the S structure is said to be reducible to the

S ′ structure. Otherwise, the S structure is said to be irreducible to the S ′
structure. By definition, two structures having the same set of the degrees

of freedom are mutually reducible. In eq.(7), the S ′ structure is reducible to

the S structure, but not the other way around–reducibility is not symmetric.

7We simplify notation: instead of the degrees of freedom, we simply use the particles
labels .
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Reducibility is transitive yet: if S3 is reducible to S2, and S2 is reducible to

S1, then S3 is reducible to S1.

Below, we provide some illustrative examples.

Example 1. Let us consider a composite system C consisting of three particles,

1, 2 and 3. We are interested in the following structures of C: S = {1, 2, 3},
S1 = {1, 3, 2}, S2 = {1, S} and S3 = {S ′, 3}, where the bipartite systems,

S = 2 + 3 and S ′ = 1 + 2. These structures are obtained from each other by

the trivial operations of grouping the systems, or decomposing, or reorder-

ing/permutations. In the set of the structures, only S2 and S3 are mutually

global structures, while the other are mutually reducible: Si → S1, i = 2, 3.

The global transformation:

S2 = {1, S} → S3 = {S ′, 3} (8)

is characteristic for quantum teleportation. The composite system’s state

is endowed by entanglement–”entanglement swapping”; for some details see

Section 3.1.

Example 2. Consider a composite system consisting of four subsystems. To

be specific, let us consider two electrons, formally presented as 1e, 2e, and

two protons, 1p, 2p. The structures of interest are: S = {1e, 2e, 1p, 2p},
S1 = {1e, 1p, 2e, 2p}, S2 = {1H, 2e, 2p}, S3 = {1H, 2H}, S4 = {1CM, 1R,

2CM, 2R} and S5 = {CM,R}; CM and R, cf. eq.(4), represent the center-

of-mass and the ”relative particle”, while e.g. the 1H represents the hydrogen

atom composed of the 1e and 1p, symbolically 1H = 1e+ 1p. By definition,

eq.(4), the CM and R ”systems” do not consist of (cannot be separated into)

the ”original” systems (the electrons and protons), and vice versa. The S3
structure refers to a pair of the hydrogen atoms, each atom being presented

as a pair ”electron and proton” (H = e + p). The S4 structure represents a

pair of the hydrogen atoms, each of which decomposed as CM + R. The S5
represents a pair CM +R for the total C system.
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We strongly emphasize: S3 = {1H, 2H} 6= S ′4 = {1H, 2H}, where the later is
obtained by grouping in the S4 structure, H = CM+R. This non-equality is

a consequence of the fact that the hydrogen atoms are differently built starting

from the smaller ”pieces”–from the e and p, or from the CM and R systems,

respectively. On the other hand, if the atom’s structures are not specified,

then formally the structure {1H, 2H} can be differently decomposed also as

(is reducible to) S1, S4 or S5.

In quantum chemistry, the S structure is considered to be the most fundamen-

tal [non-relativistic] definition of the hydrogen molecule. To this end, more

precisely, the bipartite structure S ′ = {E,P} is considered, where E = 1e+2e

and P = 1p+ 2p. On the other hand, the S3 structure is of interest in some

condensed-matter considerations. There, the hydrogen molecule is consid-

ered as a pair of electrically neutral, oscillating particles (the atoms, 1H

and 2H). The S5 is of interest in investigating the large-molecules interfer-

ence/decoherence effects as well as in the Stern-Gerlach-like experiments. All

these structures are physically realistic in the respective physical situations–

see Chapter 5 for details.

Regarding Example 2: the structures follow from each other, e.g., as

S re−order−→ S1
grouping−→ S2

grouping−→ S3 non−trivial−→ S4 non−trivial−→ S5. (9)

The S2 structure is local relative to both, S1,3, while S1 is global relative to S3.
There is a chain of reducibility: S3 → S2 → S1. For certain definitions of the

relative positions, R [e.g. R = 1R
⋃

2R]: the S3 structure is global relative

to both S4,5, but S4 is local relative to S5. The structures Si, i = 3, 4, 5, are

mutually irreducible.

It is important to emphasize: every structure S uniquely determines the

sets of the structures of the composite system that are global/local, re-

ducible/irreducible relative to S.
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2.2.2 Mutually irreducible global structures

Instead of delving into the mathematical subtleties of the LCTs forming the

symplectic group for a composite system, we proceed with the less formal yet

physically more intuitive presentation.

In this section, we consider the mutually global and irreducible structures,

which cannot be obtained from each other via the trivial LCTs. By excluding

the trivial transformations, this kind of structures are mutually global if they

do not have even a single degree of freedom in common. In Example 2: the

S4,5 structures are of the kind relative to all other structures, as well as to

each other.

For a set of such structures, the following are direct implications of eq.(6):

(1) For every bipartite structure of a composite system, C = A+B, the A sub-

system is defined if and only if the B subsystem is defined. The subsystems

A and/or B may have their own structures.

(2) Subsystems belonging to different (not necessarily bipartite) structures

are mutually irreducible. To this end, the transformations eq.(4) are paradig-

matic: the CM or R systems cannot be decomposed into the original systems

1 and 2, and vice versa.

(3) Subsystems belonging to different structures mutually do not interact.

Therefore there is not any correlation and hence there is no information flow

between them.

(4) Every structure is defined by its own ”elementary” particles and their

interactions. The symmetry rules for one structure are in a unique (the LCTs-

defined) relation with the symmetry rules for any other structure (Anderson

1993, 1994, Harshman 2012b, Manzano et al 2013).

Now, for the mutually global and irreducible structures, we provide:

Lemma 2.1 Subsystems belonging to different structures are mutually infor-

mation-theoretically separated. There is not any information flow between

them.
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Proof: Without loss of generality, let us consider bipartite structures, S1 =

A + B and S2 = D + E; each subsystem, A,B,D or E may be a composite

system itself. The probability distributions for e.g. A andD, denoted8 respec-

tively ρ(xA) and ρ(xD), are not mutually related. The ρ(xD) = ρ(xD(xA, xB))

cannot be used to derive ρ(xA): integrating ρ(xD) over xB does not provide

ρ(xA):
∫

ρ(xD)dxB 6= ρ(xA). The only way to obtain ρ(xA) via integrating

over xB is to use the total system’s, C’s, probability density, ρC ≡ ρ(xA, xB) =

ρ(xD, xE): ρ(xA) =
∫

ρCdxB. On the other hand, presenting ρC = ρ(xA, xD)

cannot help as the linear dependence of xA and xD makes the integration
∫

ρ(xA, xD)dxB ill defined. So, knowledge about one subsystem (e.g. about

the A system), in principle, does not provide any information about a sub-

system (e.g. the D system) belonging to an alternate structure. Finally, due

to the above point (3), there is not exchange of information or correlation

between subsystems, which belong to different structures–which completes

the proof. Q.E.D.

Of course, subsystems belonging to the same structure (e.g. A and B) may

in principle provide description of each other. Due to correlation between the

subsystems, a local measurement performed on one subsystem may provide

some information regarding the other subsystem. Regarding quantitative

measures of correlations, see Sections 3.1 and 3.2.

Everything told above equally refers to the ”closed” as well as to the ”open”

quantum systems.

2.3 Quantum mechanical structures

It is essential, yet probably trivial, to note: every composite quantum system

C is defined by unique Hilbert state space, HC , Hamiltonian, H, and quantum

state in every instant in time.

The ”coarse-graining” and the ”fine-graining” operations formally do not

preserve the number of the composite system’s degrees of freedom. Of course,

8In order to simplify notation, we do not use the rigorous form, ρ(x, x′) ≡ 〈x|ρ|x′〉.
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the degrees of freedom as stil there, but ”buried” in the degeneracy of the

coarse-grained state. LCTs induce re-factorization of the composite system’s

Hilbert state space, HC

Π⊗Ni=1Hi = HC = Π⊗N
′

α=1Hα, (10)

where Hi is a factor space pertaining to the original, while Hα pertains to the

new structure of the composite system. For bipartite decompositions, which

is our main subject, C = A+B, or C = D + E, eq.(10) reads as:

HA ⊗HB = HC = HD ⊗HE. (11)

Needless to say, tensor product (as well as scalar product) of states belonging

to the factor spaces of the different factorizations, is not defined.

The composite system’s Hamiltonian, H, has different forms for the different

structures, e.g.:

N
∑

i=1

p2i
2mi

+ V ({xi}) =
N
∑

α=1

π2α
2µα

+ V ({ξα}). (12)

For the bipartite structures introduced above, the Hamiltonian reads, in gen-

eral, as:

TA + V (xA) + TB + V (xB) + VAB = TD + V (xD) + TE + V (xE) + VDE, (13)

where ”V ” denotes the possible classical external fields for the subsystems,

while the double-subscript terms represent the interactions.

It is worth repeating: for a composite system, the Hilbert state space and

the set of the observables, including the system’s Hamiltonian, are unique.

According to the Schrödinger law, [normalized] quantum state of the system

is [up to arbitrary phase] also unique in every instant in time. The same

applies to the open systems not describable by the Schrödinger law. An open
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system’s state is defined by the tracing out operation, e.g. ρA(t) = trBρC(t),

which implies unique density matrix for every subsystem in every instant in

time.

2.4 Quantum relativity of ”system” and ”locality”

Quantum structures point out, that the very basic physical concept of ”sys-

tem” is relative. Lemma 2.1, Section 2.2.2, exhibits that subsystems belong-

ing to certain different structures are mutually physically and information-

theoretically separated. In practice this means that the concept of ”system”

is structure dependent (Dugić and Jeknić 2006, Dugić and Jeknić-Dugić 2008):

a system belonging to one structure can be unobservable for an observer that

belongs to some alternative structure.

An open composite system is determined by the set of the observables ac-

cessible to measurement and manipulation (the ”preferred” observables). In

principle, every observable of a composite system can be measured. In prac-

tice, it is usually the case that only some observables can be easily measured

(Zanardi 2001). In effect, experimenter acquires only small fraction of in-

formation about the composite system. Most of the remaining degrees of

freedom (subsystems) remain undetermined or poorly known.

Every structure is uniquely defined by a tensor product factorization eq.(10).

The orthonormalized bases and observables adapted to a factorization are

structure specific. e.g. For the H1 ⊗ H2 factorization, an orthonormalized

basis {|m〉1 ⊗ |n〉2} as well as an observable A1 ⊗ I2 are structure specific. It

is important to stress: the observable A1 ⊗ I2 and its measurement are local

only for the H1 ⊗ H2 factorization. Relative to some alternative structure,

the observable A1 ⊗ I2 is a ”collective” observable whose measurement is

non-local (Dugić and Jeknić 2006, Dugić and Jeknić-Dugić 2008). e.g. Mea-

surement of the atomic CM position is a one-particle observable, xCM ⊗ IR,

for the HCM⊗HR factorization. However, regarding the alternate e+p struc-

ture, its measurement is collective–eq.(4) emphasizes that the CM position

is determined by the positions of both e and p.
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Therefore, measurement of the CM ’s position (or momentum) affects both e

and p, but only partially–the R system remains unaffected by the measure-

ment. On the other hand, simultaneous measurement of both the CM and

R systems is equivalent to a simultaneous measurement of both the e and

p, and vice versa. Such measurements are the measurements performed on

the atom as a whole. Thereby the concept of ”collective” (”composite”) ob-

servables and measurements also become relative (structure dependent). So

we may say, that the atomic CM system is not more ”collective” than the

atomic electron. Needless to say: every observable local to a structure is an

observable of the total system C.
Hence, in formal terms, ”locality” (of a subsystem, observable or of a mea-

surement, or of any action exerted on the composite system C) is defined

by the tensor product structure of the Hilbert state space and by the cor-

responding ”one-particle” observables. Phenomenological aspects of these

findings are presented and discussed in Chapter 5.

Finally, the structure-induced notion of locality as described above does not

incorporate the relativistic notion of locality, which is of interest for the Bell

inequalities tests. Relativistic locality can be introduced once the tensor-

product structure (i.e. the structure-induced locality) is defined. For ap-

proaches that unite the structure-induced locality and the relativistic locality

see e.g. (Zanardi et al 2004, Harshman and Ranade 2011).
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Chapter 3

Quantum Correlations Relativity

In quantum teleportation (Bennett et al 1993), three qubits are specifically

prepared. A qubit 1 is in unknown state |u〉1, while the pair 2+3 is in a Bell

state, e.g. |Φ−〉23 = 1√
2
(|0〉2|1〉3−|1〉2|0〉3). The total system’s quantum state

can be presented in the different forms for the following structures9:

S = 1 + (2 + 3) : |Ψ〉123 = |u〉1
1√
2
(|0〉2|1〉3 − |1〉2|0〉3)

S1 = 1 + 2 + 3 : |Ψ〉123 =
1√
2
(|u〉1|0〉2|1〉3 − |u〉1|1〉2|0〉3)

S2 = 2 + 1 + 3 : |Ψ〉123 =
1√
2
(|0〉2|u〉1|1〉3 − |1〉2|u〉1|0〉3). (14)

However, quantum teleportation is not possible due to any of the structures

presented in eq.(14), but rather to the S3 = (1 + 2) + 3 structure for which:

|Ψ〉123 =
1

2
[|Ψ−〉12|u1〉3 + |Ψ+〉12|u2〉3 + |Φ+〉12|u3〉3 + |Φ−〉12|u4〉3]. (15)

The states {|Ψ±〉, |Φ±〉} form the so-called Bell basis, while the |ui〉 states
are not mutually orthogonal (for further details see (Benett et al 1993) or

(Nielsen and Chuang 2000)).

The structures are related by the trivial transformations of variables as fol-

9We omit the tensor-product symbol.
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lows:

S decomposing−→ S1
grouping−→ S3. (16)

So, a simple redefinition of the composite system’s structure provides entan-

glement swapping from the pair 2+3 to the pair 1+2, for the quantum state

|Ψ〉123 in an instant in time. A composite measurement on the subsystem 1+2

and the classical communication between Alice and Bob allow teleportation

of the unknown state |u〉 from qubit 1 to qubit 3.

This dependence of the form of a quantum state on the composite system’s

structure can be easily demonstrated for the hydrogen atom, which is a con-

tinuous variable (CV) system.

Hydrogen Atom (HA) is defined as a pair ”electron+proton” (e + p) that

mutually interact via Coulomb interaction. Introducing the atomic CM and

R variables (while neglecting the spin) provides separation of variables and

the exact solution to the quantum HA model. Relation of the two structures

is of the kind considered in Section 2.2, see also eq.(4).

Formally, the Hamiltonian, H, of the atom reads as:

~p2e
2me

+
~p2p
2mp

− e2

4πǫ◦|~re − ~rp|
= H =

~p2CM

2M
+
~p2R
2µ
− e2

4πǫ◦|~rR|
(17)

where we borrow notation from eq.(4). Due to non-interaction between the

CM and R systems, the state for the CM +R structure of the atom can be

assumed to be tensor product:

CM +R : |ψ〉atom = |χ〉CM |nlmlms〉R; (18)

in eq.(18), we employ the standard notation of quantum theory for the hy-

drogen atom.

However, due to the Coulomb interaction between the electron and the pro-
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ton, one should expect entanglement:

e+ p : |ψ〉atom =
∑

i

ci|i〉e|i〉p. (19)

This entanglement can be estimated to be weak as follows. Let us apply

the standard adiabatic approximation to the pair e + p. In the zeroth order

of approximation, the proton is ”frozen” in a spatial position ~r◦p. Then the

atomic Hamiltonian, the lhs of eq.(17), reduces to the electron’s effective

Hamiltonian and the related Schrödinger equation:

{

~p2e
2me

− e2

4πǫ◦|~re − ~r◦p|

}

|φn〉e = Een|φn〉e. (20)

where ~r◦p is a c-number, not a dynamical variable. It is obvious that eq.(20)

is of the same form as for the R system–cf. the rhs of eq.(17). So, the

solutions to the rhs of eq.(17) and eq.(20) are formally the same. With some

simplification of notation, the state of the atom is of the form (Gribov and

Mushtakova 1999, Atkins and Friedman 2005):

√

1− κ2|φn〉e|~r◦〉p + |O(κ)〉ep, (21)

where κ ≡ (me/mp)
3/4 ≪ 1–of the order of the standard adiabatic parameter

in quantum molecules theory (see Section 4.2.2). As distinct from eq.(18),

the small term on the rhs of eq.(21) reveals the presence of entanglement for

the atomic e+ p structure. Hence quantum dynamics for the two structures

(e+p and CM +R) of the hydrogen atom are not mutually equivalent, while

eq.(18) is known to be in accordance with experimental observations.

3.1 Quantum entanglement relativity

From eqs. (14)-(21) we can respectively write:

|u〉1
1√
2
(|0〉2|1〉3 − |1〉2|0〉3) = |Ψ〉123 =
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1

2
[|Φ〉12|u1〉3 + |Φ〉12|u1〉3 + |Φ〉12|u1〉3 + |Φ〉12|u1〉3] (22)

and:

√

1− κ2|φn〉e|~r◦〉p + |O(κ)〉ep = |ψ〉atom = |χ〉CM |nlml〉R. (23)

In the position representation, eq.(23) [with a slight change in notation] reads:

√

1− κ2φn(~re − ~r◦p)δ(~rp − ~r◦p) + κΦO(~re, ~rp) = χ(~rCM)ϕnlml
(~rR). (24)

The expressions eq.(22) and eq.(24) are instances of the general quantum me-

chanical rule–of the so-called Entanglement Relativity (Vedral 2003, Caban et

al 2005, Dugić and Jeknić 2006, Dugić and Jeknić-Dugić 2008, Zanardi 2001,

Ciancio et al 2006, De la Torre et al 2010, Harshman and Wickramasekara

2007, Jeknić-Dugić and Dugić 2008, Terra Cunha et al 2007). For a compos-

ite system C that can be decomposed as S + S ′ or as A + B, Entanglement

Relativity (ER) establishes for an instantaneous state, |Ψ〉, e.g.

|ξ〉S|φ〉S′ = |Ψ〉 =
∑

i

ci|i〉A|i〉B. (25)

For every set (e.g. an orthonormalized basis) of the tensor-product states,

there is infinitely many entangled states–the number of entangled states in a

Hilbert space is incomparably larger than the number of the tensor-product

states. Hence the tensor product states are rare (”improbable”) in the Hilbert

state space and for the most of the practical purposes–but see eq.(3)–this

possibility can be neglected. So, ER implies that there is entanglement for

practically every state |Ψ〉 of a composite system. Of course, a state can have

entanglement for both structures of the composite system; some subtleties

regarding the finite-dimensional systems can be found in (Harshman and

Ranade 2011). Nevertheless, amount of entanglement for a quantum state is

not an LCTs invariant.
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From eqs. (22)-(25), we directly realize: ”quantum entanglement” is not a

feature of a composite system, or of a system’s state, but is a feature of the

composite system’s structure.

3.2 Quantum discord relativity

”Quantum discord” is a common name for a number of mutually different

measures of non-classical (quantum) correlations in composite quantum sys-

tems (Olivier and Zurrek 2001, Henderson and Vedral 2001, Modi et al 2012,

Xu and Li 2012). For closed systems, ”discord” coincides with ”entangle-

ment”. For open quantum systems, there are quantum correlations that are

not identical with entanglement. Total amount of non-classical correlations

is measured by ”discord”.

If a composite (e.g. bipartite) quantum system carries the total correlation

I, then the non-classical correlation can be quantified by subtracting the

classical correlation, denoted J , from the total I. Of course, operationally,

information is acquired by performing a quantum measurement, e.g. on one

subsystem of the composite system. On this basis, one tries to conclude

about the amount of non-classical correlations in the composite system.

Two systems, S and S ′, constitute a bipartite system C = S+S ′. A quantum

measurement performed on S ′ and defined by a projector, ΠS′i, provides the

final state of the composite system: ρS|ΠS′i
= IS ⊗ ΠS′iρIS ⊗ ΠS′i. Then the

maximum classical correlations can be defined as:

J←(S|S ′) = Svn(S)− inf
{ΠS′i}

∑

i

|ci|2Svn(ρS|ΠS′i
) ≥ 0, (26)

where Svn represents von Neumann entropy, Svn(ρ) = −trρ ln ρ, for instanta-
noeus state ρ.

The total correlation in the system is defined as the mutual information,

I(S : S ′) = Svn(S) + Svn(S ′) − Svn(S, S ′) ≥ 0 that, according to the above

described idea, provides the following measure, termed ”one-way discord”, of
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quantum correlations in the composite system C (Olivier and Zurek 2001):

D←(S|S ′) = I(S : S ′)− J←(S|S ′) ≥ 0. (27)

The arrows appearing in eq.(27) emphasize that the measurement is per-

formed on S ′. If the measurement is performed on S, then the roles of

S and S ′ in eq.(27) are mutually exchanged. Then the one-way discord

D←(S ′|S) = D→(S|S ′) in full analogy with eq.(27). The closely related

measure is the ”two-way discord”, D↔(S, S ′) = max{D←(S|S ′), D←(S ′|S)},
which tends to be larger than one-way discord.

The one-way discord D←(S|S ′) equals zero if and only if the composite sys-

tem’s state, ρC , is of the form (Modi et al 2012, Xu and Li 2012), (and the

references therein):

ρC =
∑

k

pk|k〉S〈k| ⊗ ρS′k, S〈k|k′〉S = δkk′,
∑

k

pk = 1, (28)

while the two-way discord equals zero if and only if the composite system’s

state is of the form (Modi et al 2012, Xu and Li 2012), (and the references

therein):

ρ′C =
∑

kl

pkl|k〉S〈k| ⊗ |l〉S′〈l|,S 〈k|k′〉S = δkk′,S′ 〈l|l′〉S′ = δll′,
∑

k,l

pkl = 1. (29)

Apparently, the state ρ′C , eq.(29), is a special case of ρC appearing in eq.(28):

commutativity of all ρS′k in eq.(28) gives rise to ρ′C in eq.(29).

Let us now consider an alternate structure (Dugić et al 2013), C = A+B.

By definition, mixed states are ”mixtures” of pure states: in eq.(29), the pure

states |k〉S|l〉S′ are ”mixed” with the probability distribution {pkl}. So, we can
use ER, Section 3.1. As it can be easily shown, only if for every |k〉S|l〉S′ there
exists some |α〉A|β〉B [such that A〈α|α′〉A = δαα′ and B〈β|β′〉A = δβ,β′] the

state eq.(29) obtains the form: ρ′C =
∑

α,β p
′
αβ|α〉A〈α|⊗|β〉B〈β|,

∑

α,β pαβ = 1,
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for which the two-way discord for the A+B structure D↔(A,B) = 0. In all

other cases, the state ρ′C is not of the form of eq.(29) for the alternate (A+B)

structure. So, a change of the composite system’s structure induces a change

in two-way discord: two-way discord that equals zero for one structure (e.g.

for 1 + 2) becomes nonzero for an alternate structure (for A+B).

Entanglement Relativity, Section 3.1, states:

|k〉S|l〉S′ =
∑

α,β

cklαβ|α〉A|β〉B. (30)

Substituting eq.(30) into eq.(29) gives:

ρ′C =
∑

k,l,α,β

pkl|Ckl
αβ|2|α〉A〈α| ⊗ |β〉B〈β|

+
∑

k,l,α 6=α′,β 6=β′

pklC
kl
αβC

kl∗
α′β′|α〉A〈α′| ⊗ |β〉B〈β′|. (31)

In order for eq.(31) takes the form of eq.(29) also for the A + B structure,

the following conditions should be satisfied:

∑

k,l

pklC
kl
αβC

kl∗
α′β′ = 0, ∀α 6= α′, ∀β 6= β′, (32)

Analogous analysis of the state ρC , eq.(28), gives rise to the following conclu-

sion: in order for one-way discord equals zero also for the alternate structure

(A+B), the following conditions must be fulfilled:

∑

k,l

pkω
k
l C

kl
αβC

kl∗
α′β′ = 0, ∀α 6= α′, ∀β, β′, (33)

while pk ≥ 0, ωk
l ≥ 0,

∑

k pk = 1 =
∑

l ω
l
k, ∀l. Both conditions, eq.(32)

and eq.(33), represent the sets of the simultaneously fulfilled equalities. For

the continuous variable systems, the number of such equalities is infinite.

However, this does not mean that these conditions can never be fulfilled.
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Actually, the number of the normalization and orthogonality conditions for

the states |k〉S|l〉S′ as well as for |α〉A|β〉B is also infinite. So, we cannot

conclude that these conditions, or at least one of them, is never fulfilled.

Nevertheless, for every combination of the coefficients Ckl
αβ satisfying eq.(32)

or eq.(33), there is an infinite number of variations of the coefficients pk and

ωk
l , or pkl, respectively, that do not satisfy eq.(32) and eq.(33). In practice, it

means one may forget about the states fulfilling the conditions eq.(32) and/or

eq.(33).

In effect, virtually every change in structure of a bipartite quantum system

gives rise to a change in quantum discord: e.g. if quantum discord is zero

for one structure, it is almost certainly non-zero for arbitrary alternative

structure of the composite system

ρS ⊗ ρS′ =
∑

i

λiρAi ⊗ ρBi. (34)

Eq.(34) exhibits quantum discord relativity (QDR, (Dugić et al 2013)). Bear-

ing in mind that ”quantum discord” is more general than ”entanglement”, we

find Quantum Correlations Relativity (QCR): there is quantum correlation

for practically every state of a composite quantum system. Or the other way

around: ”quantum correlation” does not concern of a composite system, or

of any of its possible states, but concerns the composite system’s structure.

3.3 Some mathematical remarks

Considerations in Section 3.2 are based on ER, which is a universal rule–a

corollary of the universally valid quantum mechanics–applicable for finite-

as well as infinite-dimensional, open or closed systems and for every kind of

LCTs.

The task of estimating amount of non-classical correlations in a composite

system for different structures can be reduced to the following task:

T. Starting from a given form of a composite system’s state, provide a form
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of the state for some alternate structure of the composite system.

Regarding the trivial LCTs (of grouping or decomposing or permutations of

the constituent particles), it is straightforward (although probably sometimes

tedious) to provide the alternate forms of the state–cf. eqs. (14) and (15).

However, regarding the non-trivial LCTs, and particularly those distinguished

in Section 2.2.2, for the closed systems the task T coincides with providing the

Schmidt canonical form (for a fixed instant in time) of the state. To this end,

we are not aware of any algebraic recipe. Typically, obtaining Schmidt form

of the state assumes a representation (e.g. the position representation). The

methods are proposed that do not provide any analytical solutions: numerical

analysis may be helpful for Gaussian states of the continuous variable sys-

tems, see e.g. (Ciancio et al 2006). For an example regarding the spin-chain

systems see (Fel’dman and Zenchuk 2012).

Finally, regarding the mixed states (of interest for open systems), the taskT is

an instance of the so-called ”quantum separability (QUSEP)” problem, which

is thoroughly investigated for the finite-dimensional systems. The QUSEP

problem is known to be computationally an NP-Hard problem (Gharibian

2010). Also for the finite-dimensional systems, it appears that calculating

quantum discord is NP-Complete (Huang 2013).

So there is not a universal method for solving the task T. This is an open

issue pointed out by our considerations.

3.4 Some physical remarks

It seems unavoidable to conclude, that QCR constitutes the core of the most,

if not all, of the problems (Zeh 1993, 2005, Primas 1994) appearing in the

”one-particle” methods in solid state physics, nuclear physics and quantum

chemistry. Nevertheless, introducing quantum correlations into consideration

can be useful as we emphasize below.

There is a simple idea for avoiding decoherence (Jeknić-Dugić and Dugić

2008). Decoherence is expected to reduce amount of quantum correlations in
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a composite system. If decoherence ruins quantum correlations for the S+S ′

structure, this is not expected to be the case for an alternate structure A+B.

So, quantum engineers can avoid decoherence (that is unfolding in the S+S ′

structure) by simply targeting the observables of the alternate, the A + B,

structure.

QCR implies: manipulating the composite system C can be virtually indepen-

dent of the C’s initial preparation. No matter of the initial state of C, there
is always a possibility to use quantum correlations. e.g. If the initial state

is tensor product for the S + S ′ structure, one can use quantum correlations

by operationally targeting the observables of an alternate A + B structure.

Accessibility of a composite system’s observables is a subtle an issue to be

discussed in Chapters 5 and 7. So, keeping in mind this subtlety, in principle,

one may forget about the problems posed by the initial state preparation for

bipartitions of a composite quantum system.

QCR changes our intuition about the composite quantum systems. The uni-

versally valid quantummechanics does not a priori select a preferred structure

of a composite system. All structures can be formally treated on the equal

footing thus challenging the classical prejudice of Section 2.1. The place of

the classical intuition, Section 2.1, in the quantum mechanical context is a

subject of Chapters 7 and 8, and particularly of Section 8.2.

Finally, the following consequences of QCR will be presented in the remainder

of this book: the so-called parallel occurrence of decoherence (Section 6.3.3),

a limitation of the Nakajima-Zwanzig projection method in open quantum

systems theory (Section 6.3.4), and the preferred structure of open system

(Chapter 7).
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Chapter 4

Quantum Molecule Structures

There are different ways of defining ”molecule” as a physical system. We

distinguish (in somewhat simplified terms) a few typical models of interest

in physics and chemistry.

Chemical model (ChM). In chemistry, ”molecule” is often defined as ”An

electrically neutral entity consisting of more than one atom”10. Physically, it

is a set of atoms mutually linked11 by chemical bonds. If the atoms are point-

like (unstructured) particles, ”molecule” is simply a chain or a lattice of point-

like oscillators. Spatial distribution of atoms defines the molecule geometrical

shape (molecule configuration)–the very basic concept of stereochemistry.

Solid state model (SSM). If internal atomic excitations are added to every

atomic position introduced in the ChM, then one obtains another definition

(model) of ”molecule”. This ”molecular excitons” model is typical for solid

state physics and applications.

Quantum chemistry model (QC). In quantum chemistry, ”molecule” is defined

as a set of the atomic nuclei and the electrons in mutual interaction via the

Coulomb electrostatic field.

Taking the spin into consideration complicates the analysis. So, in order to

exhibit the structural relations between the different models, we will ignore

the molecule spin.

10IUPAC Recommendations 1994; doi:10.1351/pac199466051077.
11Phenomenologically inspired boundary conditions.
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4.1 Mutual relations of the molecule structures

The chemical model (ChM) is simply a set of point-like atoms, SChM =

{1, 2, 3, ...}–internal atomic degrees of freedom are ignored. Chemical bonds

typically enter the picture through a definite geometric shape (a configura-

tion) of a molecule. Hence it is reasonable to assume that the SChM rep-

resents a set of harmonic oscillators–the chemical bonds provide the effec-

tive harmonic field for every oscillator (which is defined by its mass, spa-

tial equilibrium-position and frequency). The assumption of existence of the

atomic equilibrium-positions is classical in its spirit. There is not a quan-

tum mechanical reason to think so, for an isolated molecule (Hund 1927).

Therefore, in the quantum mechanical context, the ChM model is not physi-

cally complete. For large molecules (such as bio-polymers), the ChM model

raises the following foundational problems: why, and how, large molecules

obtain different configurations (Hund 1927, Giulini et al 1996), and how can

be described transitions between the molecule configurations (a variant of the

celebrated protein folding problem, see (Levinthal 1968)).

For the ChM, the molecule Hilbert state space is tensor product of the indi-

vidual oscillators Hilbert spaces:

HChM = ⊗iHi, (35)

while the Hamiltonian reads as:

HChM =
∑

i

(
~p2i
2mi

+
1

2
miω

2
i~r

2
i ) +

∑

i 6=j

Vij. (36)

Non-harmonic corrections are neglected in eq.(36). For non-interacting oscil-

lators, Vij = 0, ∀i, j
The solid-state model (SSM) enriches the ChM description. If the excita-

tions are denoted by ”ex”, then the molecule structure reads as: SSSM =

{1, 1ex, 2, 2ex, 3, 3ex, ...}. Detailed physical nature of ”exciton” is here of
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secondary importance. Here we assume the excitations are well spatially

defined–joined with the respective oscillator equilibrium-positions. ”Coarse

graining” of the SSSM structure can provide a bipartite structure, S ′SSM =

{SChM , Ex}, where the exciton system Ex = {1ex, 2ex, 3ex, ...}. Quantum

mechanically, the exciton system can be analysed independently of the lattice

vibrations: the excitation transfer from one to another cell of the lattice is

allowed and numerous interesting physical effects may occur.

For the SSM structure, the Hilbert state space acquires the form:

HSSM = HChM ⊗i Fi, (37)

where Fi represents the Fock space for the ith excitation. The Hamiltonian

reads12:

HSSM = HChM +Hex. (38)

As we emphasize below, the quantum chemistry model (QCM) is the most

fundamental model of ”molecule”. As a kind of generalization of the standard

definition of ”atom”, in quantum chemistry (Gribov and Mushtakova 1999,

Atkins and Friedman 2005), ”molecule” is defined as a set of the atomic nuclei

(denoted n) and of the atomic electrons (e)–the SQCM = {1e, 1n, 2e, 2n, ...}
structure; compare to the S structure in Example 2, Section 2.2.1. The

ith atomic nucleus brings some electrostatic charge, Zie, and there is the

electrostatic Coulomb interaction between the molecule’s constituents.

Let Hei represents the Hilbert state space of the ith electron, and Hnα repre-

sents the Hilbert state space of the αth atomic nucleus. Then the molecule

Hilbert state space factorizes as:

HQCM = ⊗iHei ⊗α Hnα. (39)

12Coupling between the molecule vibrations and excitations is typically provided by ap-
plying some external field to the molecule.
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The molecule Hamiltonian reads as:

HQCM =
∑

i

~p2ei
2me

+
∑

i 6=j

Vij +
∑

α

~p2nα
2mα

+
∑

α 6=α′

Vαα′ +
∑

i,α

Viα. (40)

In eq.(40): the double-script terms refer to the Coulomb interactions; the

Latin letters refer to the electrons while the Greek letters refer to the atomic

nuclei.

A molecule of a given chemical kind is a unique entity that, as a quantum

system, is described by the unique Hilbert state space, unique Hamiltonian

and unique quantum state in every instant in time. With this in mind, the

indices that appear in eqs. (35)-(40) emphasize the structures of a single

molecule, not the different molecules. Below, we point out relations between

the different structures of a single molecule.

By grouping the electrons one can obtain the structural change, SQCM →
SSSM . This can be achieved by joining Zi electrons with the ith atomic

nucleus, so as to obtain the ith electrically neutral atom. e.g. For the hy-

drogen molecule, the structure SQCM = {1e, 1p, 2e, 2p} can be transformed

by grouping13 to obtain {(1e, 1p), (2e, 2p)} = {1H, 2H}–cf. the point (C) in

Section 2.2.1. The next step may be to introduce the atomic CM and R

systems: H = CM + R. Then the hydrogen molecule is described by the

following structure: {(1CM, 1R), (2CM, 2R)}. The R-system’s excitations

can be described in the Fock-space representation, eq.(37)-(38). Finally, by

neglecting the atomic excitations, one obtains the ChM model (structure) of

the molecule.

This chain of transformations can be shortly presented as follows:

SQCM −→ SSSM
negl−excit−→ SChM . (41)

Eq.(41) can be readily presented in the Hilbert state space structure terms.

13Of course, we assume the bound states–otherwise we have free particles.
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Regarding the Hamiltonian, eq.(41) can be presented as follows14:

HQCM
grouping−→ Hgroup =

∑

α

[Tnα +

Zα
∑

qα=1

(Teqα + V en
αqα

) +

Zα
∑

qα,q′α( 6=qα)=1

V e
qαq′α

]

+H ′ nontriv−→
∑

α

[TCMα +mCMαω
2
αx

2
CMα/2 + TRα + VRα]

excit−→

HSSM =
∑

α

[TCMα +mCMαω
2
αx

2
CMα +Hex

α ]
negl−excit−→ HChM . (42)

In eq.(42), ”α” enumerates the atoms, while H ′ contains interactions between

the constituents of the different atoms. There are exactly decoupled CM

and R systems for every atom, while the H ′ is the origin for the (effective)

harmonic potentials for the atoms. The terms in eq.(42) are simplified since

we do not take into account the electrons that are shared by the neighbor

atoms. Of course, there may be some corrections to the exact harmonic

potential that are not made explicit in eq.(42). Stating eq.(42) in the more

rigorous form does not alter our main observations.

Compare the Hgroup from eq.(42) with the HQCM eq.(40). For the QCM

structure, all the electrons, by definition, are subject to the Pauli exclusion

principle. However, for the Hgroup, the Pauli exclusion principle applies ex-

clusively to the electrons belonging to the same atom.

Quantum state of Z electrons in the QCM structure is the following Slater

determinant:

|Ψ〉molecule =
1√
Z!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Ψ1〉1 |Ψ2〉1 ...|ΨZ〉1
|Ψ1〉2 |Ψ2〉2 ...|ΨZ〉2

. . .

|Ψ1〉Z |Ψ2〉Z ...|ΨZ〉Z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(43)

However, for the electrons-system of the αth atom, the Slater determinant

14See Supplement for some details.
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reads as:

|Φ〉α =
1√
Zα!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Ψ1〉1 |Ψ2〉1 ...|ΨZα
〉1

|Ψ1〉2 |Ψ2〉2 ...|ΨZα
〉2

. . .

|Ψ1〉Zα
|Ψ2〉Zα

...|ΨZα
〉Zα

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(44)

For noninteracting atoms, the total electrons system state is simply tensor

product:

|Φ〉molecule = ⊗α|Φ〉α, Z =
∑

α

Zα. (45)

The point to be emphasized is that:

|Ψ〉molecule 6= |Φ〉molecule. (46)

Correlations of identical particles are so specific, that
∑

i ci|Φi〉molecule 6=
|Ψ〉molecule, where |Φi〉molecule is of the form of eq.(45) for every index i.

Needless to say, eq.(43) is reducible to eq.(45). So, SQCM is the most general

and the most fundamental [non-relativistic] model of molecule.

Of course, this generality of the QCM structure does not imply that the QCM

structure is reducible onto the other structures in the sense of the point (C)

of Section 2.2.1. To this end, only the SSM structure, eq.(37), is reducible to

the QCM structure via decomposing the atoms, and is also reducible to the

ChM structure by neglecting the electrons system.

It is important to stress: a huge amount of information is lost in transition

from the QCM to the SSM structure. Already at the first step of grouping,

certain electrons correlations are lost, cf. eq.(46). By introducing the atomic

CM and R systems, correlation of the electrons and the atomic nuclei is lost.

Thereby, as distinct from the QCM structure, for the SSM structure there

is no hope for obtaining the molecule configuration change (transformation)

via influencing the atomic internal degrees of freedom–some external action

that could couple the CM and the R degrees of freedom is needed. So, the
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following question is in order: to what extent the conclusions obtained for one

molecule structure can be applied to another structure? A partial answer will

be given in Section 4.3.

4.2 The protein folding problem

Protein molecules are large–of the mass in the interval 104 − 109 a.m.u.

(atomic mass units). There is really a huge number of the possible geo-

metric shapes for proteins. Interestingly, biochemists claim that there exists

a special, globular shape, the so-called ”native” shape of a molecule, that

is biologically active. Non-globular (”degenerate” shape) protein configura-

tions are biologically inactive, ”dead”, or even toxic. Transition from the

non-native to the native form (conformation) is the protein folding problem

(PFP).

In living organisms, protein molecules are suspended in water. Therefore,

it is expected that their dynamics is non-trivially influenced by interaction

with the solvent molecules. For a single molecule, the structures consid-

ered in Section 4.1 are global, while for a molecule suspended in a solution,

the structures are local (the transformations of variables do not include the

solvent-molecules degrees of freedom).

PFP is fairly described by the so-called Levinthal paradox (Levinthal 1968):

If a single protein molecule is going to be folded by sequentially sampling of

all possible conformations15, it would take an astronomical amount of time

to do so, even if the conformations were sampled at a rapid rate (on the

nanosecond or picosecond scale). Based upon the observation that proteins

fold much faster than this, Levinthal then proposed that a random conforma-

tional search does not occur, and the protein must, therefore, fold through a

series of meta-stable intermediate states. This kinetic picture of the protein

folding is at the core of the modern approach (Dill and Chan 1997).

15For simplicity, we further interchange the use of [molecule] ”shape”, ”configuration”
and ”conformation”. Terminological subtlety is of no importance for our considerations.
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PFP traditionally refers to the ChM molecule structure, Section 4.1. A

molecule is imagined as a random coil that should fold in a sequence of

some well defined conformation changes. The quantum mechanical counter-

part does not seem to be much more useful for resolving the PFP. In the

next section we briefly review some classical approaches, and emphasize the

kinetic nature of the problem. In Section 4.2.2 we briefly describe a new,

quantum-decoherence based paradigm that refers to the quantum chemistry

molecule structure.

4.2.1 The statistical-thermodynamic approach

The ChM structure is of interest. The point-like-atoms’ equilibrium-positions

form a three-dimensional lattice. Regarding the large molecules, ”conforma-

tion” is a lattice with the fixed (average) distance between the adjacent atoms

and the fixed (average) angles between the adjacent lattice segments. For ev-

ery change of conformation it is assumed not to change the distances and the

angles–conformal transformations.

Protein folding is defined as a series of local rotations that sequentially change

the molecule’s shape. Even for small protein molecules, the number of combi-

nations of local rotations is huge. It is not expectable that a molecule quickly

find the native conformation–the Levinthal paradox.

The most of the current research on protein folding considers an ensemble

of molecules suspended in a solution at fixed temperature. Related methods

provide powerful means for determining conformations even for the very large

protein molecules. Some computational methods are based on the assumption

that the native state is very stable–it can be imagined as a minimum of

the configuration-energy landscape. While all of these methods can provide

existence of the native conformation (as well as, in general, some metastable

conformations), the PFP problem, as stated by Levinthal, is more subtle–it’s

kinematic. As (Dill and Chan 1997) strongly emphasize: the PFP is not

merely about existence of the (meta)stable conformations, but rather about
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the possible configuration transitions within the classical configuration space

of a single molecule.

Even the kinetic approach does not challenge the basic strategy stemming

from the classical ChMmolecule structure: for a single molecule it is supposed

that there is a pathway (”trajectory”) in the molecule conformation space,

while in every instant in time a molecule has a definite geometrical form.

In addition, internal degrees of freedom of molecule are neglected, and are

sometimes treated as un-necessary complication. The approach (Dill and

Chen 1997) is still in a purely qualitative form.

4.2.2 A quantum decoherence approach

Quantum mechanical approach introduces the atomic internal degrees of free-

dom into consideration. To this end, the results that can be obtained for the

SSM or QCM structure are in principle not achievable on the basis of the

ChM structure. So, partial answer to the above question (cf. Section 4.1)

reads as: there is a lot of information about the folding mechanism that are

inaccessible within the ChM-based approach.

To see richness of the SSM and QCM structures compared to the ChM struc-

ture, we recall and extend what is told in Section 4.1. Both the SSM and espe-

cially the QCM structure provide a basis for the electrons-system-mediated

change of conformation. To this end, it is well known that the molecule

fluorescence and phosphorescence are phenomena closely related to protein

folding. On the other hand, quantum mechanical approach, in principle, does

not allow a definite pathway in the configuration space of the molecule. This

may be a hint for avoiding the Levinthal paradox.

However, there is more subtlety to the quantum mechanical approach to

PFP. Ever since Hund’s remark (Hund 1927), it is a foundational issue of the

whole of chemistry: how do the definite, the classical-like, stable molecule

configurations appear from the quantum mechanical substrate? Furthermore,

if quantum mechanics can provide protein conformation as a classical-like
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stable characteristic, one can wonder if it may happen that, after all, the

configuration transitions are inevitably classical–i.e. that follow some special

pathways in the configuration space?

In the remainder of this section we offer answers to both questions, in the

context of the QCM molecule structure. The answers are due to the process

of quantum decoherence: both configuration stability and transitions can be

naturally [but purely qualitatively] described (Jeknić-Dugić 2009a). This way

both, the Hund’s and the Levinthal paradox, are resolved.

The QCM structure is defined by eq.(40). Here we apply the standard

adiabatic approximation to the following variation of the QCM structure:

S ′QCM = {E,N}, where E stands for the electrons, and the N for the sys-

tem of atomic-nuclei. This bipartition helps us straightforwardly to introduce

the CM and R degrees of freedom for the later: N = CMN +RN . The set of

the relative atomic-nuclei positions, ~ρij = ~ri−~rj can be further decomposed.

Actually, the set {~ρij} can be divided into two subsets, which define the ro-

tational (RotN) degrees of freedom and the internal, the conformation (KN),

degrees of freedom.

So, a molecule is defined by the following factorization of the Hilbert space:

H = HE ⊗HCMN
⊗HRotN ⊗HKN

. (47)

The related form of the molecule Hamiltonian16:

HQCM =
∑

i

~p2ei
2me

+
∑

i 6=j

Vij + TCMN
+ TRotN + TKN

+

VE,CMN
+ VE,RotN + VE,KN

+ VRotN ,KN
. (48)

where, as usually, the double subscripts distinguish the interaction terms; the

T denoting the kinetic energy terms and the index E standing for the total

electrons system.

16See Supplement for details.
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Compared with the standard QCM structure, E +N , our approach has the

following virtues. First, cf. Section 4.3 below, it can be directly compared

with the ChM and the SSM structures. Second, there are at least three dif-

ferent channels of the environmental (the solvent) influence on KN–the last

two interaction terms in eq.(48) provide the possible ”channels” for influ-

encing the molecule conformation. Third, one can easily apply the standard

adiabatic approximation to the structure eq.(47). Fourth, on this basis, one

can define the electrons positions to be measured from the CMN system as

the reference system. Classically, the ~rCMN
is a c-number, not a dynamical

variable; so, rigorously, the electrons variables presented formally as the op-

erators acquire the form: ~̂rei − ~rCMN
Î. The quantum mechanical reference

frames will be considered in Chapter 8. Due to the presence of the electrons,

the CMN and RN systems are in mutual interaction17.

The following masses are implicit in the kinetic-energy terms in eq.(48): the

electron massme, the CMN massM , the rotational moment of inertia IRotN
18,

and the ”reduced masses” µKN i. Now it is easy to show that the adiabatic

parameter κ = max{me/M,me/IRotN ,me/µmin} ∼ me/µmin < 10−3, where

µmin is the minimum ”reduced mass”–of the order of the minimum nucleus-

mass. Physically it means that, like for the standard QCM structure, E +

N , one can adiabatically cut off the electrons system from the rest of the

molecule.

In the zeroth order of approximation, when dynamics of the non-electronic de-

grees of freedom is ”frozen”, the Hamiltonian eq.(48) reduces to the electrons-

system’s Hamiltonian:

HE =
∑

i

~p2ei
2me

+
∑

i 6=j

Vij + V (CMN) + V (E,RotN) + V (E,KN) +

V (RotN , KN) ≈
∑

i

~p2ei
2me

+
∑

i 6=j

Vij + V (RotN) + V (KN). (49)

17This coupling is absent for the atomic CM and R of the total atom.
18Properly expressed in the mass units.
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The terms on the rhs of eq.(49) represent the effective external classical fields

for the electrons system19. We assume that the CMN system will not affect

the electrons, at least as long as adiabatic approximation is satisfied.

The electrons-system Hamiltonian eq.(49) gives rise to the zeroth order Schrö-

digner equation:

HE|φn(KN)〉E = En(KN)|φ(KN)〉E. (50)

In eq.(50), we keep only dependence on the conformation, KN , since it defines

spatial configuration of the positively charged atomic nuclei. Tentatively

neglecting the RotN and CMN systems, the zeroth order form of the molecule

quantum state reads as:

|φn(KN)〉E ⊗ |K〉N + |O(κ)〉, (51)

Just like in eq.(21), there is entanglement–for the E and KN systems.

Now dynamics of the KN system is adiabatically defined by the effective

(”average”) Hamiltonian (Gribov and Mushtakova 1999):

HKN
=e 〈φn(En(KN))|HQCM |φn(En(KN))〉e. (52)

Intuitively, eq.(52) describes what the KN system can ”see” of the fast

electrons-system dynamics. Without delving into details, we emphasize: the

energy eigenvalue for the fixed quantum number n, En(KN), represents an

effective potential-energy (hyper)surface for the configuration system. It is

usually assumed that there are certain depressions (the local minimums) in

the potential energy landscape that would correspond to the phenomenolog-

ically observed stable conformations (Gribov and Mushtakova 1999, Atkins

and Friedman 2005). Of course, the number of such local minimums (the

stable conformations) is enumerable (KN1, KN2, ...) for every n.

19The fixed atomic nuclei positions enter as the fixed parameters in eq.(49).
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Conformation dynamics generated by the Hamiltonian eq.(52) is usually

imagined as conformational vibrations (oscillations) in the vicinity of a lo-

cal minimum of the conformation-energy hypersurface. Given that the weak

VKN ,RotN interaction can be considered as a perturbation, the exact form of

the molecule state is of the form20:

|Φ〉molecule = |φn(KN)〉E|K〉N |χ〉RotN |φ〉CMN
+ |O(κ)〉E,KN ,RotN ,CMN

. (53)

So, if one deals with the first (the dominant) term on the rhs of eq.(53), the

adiabatic method guarantees that he will obtain the results with an error not

larger than κ3/4 ≪ 1.

But this is strange, since neither the exact state eq.(53) nor its dominant

term are eigenstates of the molecule Hamiltonian eq.(48). In the dominant

term, the conformation state |K〉N is the molecule-conformation eigenstate.

Bearing in mind that [HQCM , KN ] 6= 0, one may say that the adiabatic ap-

proximation provides a partial answer to the Hund’s paradox (Hund 1927).

Nevertheless, the adiabatic ”mechanism” is not sufficient for this purpose

(Gribov and Magarshak 2008, Dugić and Jeknić-Dugić 2009a).

On the other hand, for the stable classical-like conformations, one may won-

der if any quantum-mechanical mechanism can provide the finite-time con-

formational transitions–the Levinthal paradox (Levinthal 1968)?

Interestingly enough, the following plausible stipulations provide a coherent

and rather general background for answering both questions. The stipula-

tions are phenomenologically inspired: typical experimental investigations

are performed on an ensemble of molecules in a solution (e.g. in water). In

this new context both the Hund’s and the Levinthal paradoxes are resolved

(Jeknić-Dugić 2009a)21.

20Integrating over the electronic degrees of freedom in eq.(52) turns all the electrons-
system’s couplings [appearing in eq.(48)] with the rest into the external fields, and the only
remaining interaction term is the VKN ,RotN term.

21http://www.verticalnews.com/premium-newsletters/Journal-of-Physics-Research-
/2009-03-31/71094PR.html.
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Stipulation 1. For every stationary state of the composite system ”[ensem-

ble of ] molecules + solution”, the solution acts as a decoherence-inducing

environment for the molecule conformation system KN .

Stipulation 2. Non-stationary state of the ”[ensemble of ] molecules +

solution” system does not preserve molecular conformations. Every non-

stationary state terminates by a stationary state.

If there is not any severe external influence on the ”molecules+environment”

system, then we say the system is in stationary state. ”Non-stationary”

means the opposite, i.e. the different ways the composite system can be

disturbed, e.g., by heating, by intense illuminating, by adding new solvent

(this can change the solution pH value) etc. Both ”stationary” and ”non-

stationary” are phenomenologically inspired. By definition, ”stationary state”

is a state (or, physically, a set of states) that follows from some kind of the

environment relaxation. For large environment, this can be thermodynamic

equilibration.

The stipulations do not prejudice either the decoherence mechanism or the

asymptotic (t → ∞) relaxation into a (possibly unique) stationary state of

the open system, KN . The initial and the final (non-asymptotic) stationary

states may be physically totally different, except in that that they should

provide the occurrence of decoherence for the KN system.

Stipulation 1 establishes: arbitrary initial state of the molecule conformation

quickly becomes a mixture of conformations:

ρKN
= trE,CMN ,RotNρmolecule =

∑

i

pi|ki〉KN
〈ki|. (54)

Every ”stationary state” is described by eq.(54). Of course, the sum in eq.(54)

can sample different sets of conformations for different stationary states.

Now, according to Stipulation 2, external influence does not preserve the

states in the form of eq.(54). Even more, one can expect that external influ-

ence (giving rise to ”non-stationary state”) provides a time dependent state
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ρ′KN
(t), such that:

[ρ′KN
(t), ρ′KN

(t′)] 6= 0, t 6= t′. (55)

Totally independently of the non-stationary state dynamics22, relaxation into

another stationary state provides [Stipulation 1] the final conformation-system

state, ρ′′KN
, of the general form of eq.(54)23. Therefore, the total dynamics of

the open system can be described as follows:

ρKN
=
∑

i

pi|ki〉KN
〈ki| → ρ′KN

=
∑

i

πi|χi〉KN
〈χi| → ρ′′KN

=
∑

i

qi|k′i〉KN
〈k′i|,

(56)

where:
∑

i pi = 1 =
∑

i qi, |χi〉 =
∑

j cij|kj〉, and [ρ, ρ′] 6= 0 6= [ρ′, ρ′′], but

[ρ, ρ′′] = 0. The final state (ρ′′) can mix the conformations that are not

present in the initial state (ρ), while the statistical weights for the common

conformations need not be equal for the initial (ρ) and the final (ρ′′) state;

i.e. pi 6= qi for at least some index i.

This possibility of appearance of the new conformations, as well as of the

different probabilities for the common conformations for the initial and the

final conformation-system state, is the decoherence-based model of the con-

formation transitions in large molecules.

So, Stipulation 1 provides an answer to the Hund’s paradox. On the other

hand, both Stipulation 1 and Stipulation 2 provide a general basis for the

conformational transitions, eq.(56). The time needed for such transitions is

of the order of the ”decoherence time” thus not leaving room for the Levinthal

paradox.

22Except if one assumes nonrealistic scenario that the external influence preserves the
conformation-system state.

23This is a direct consequence of the fact that decoherence is a quantum measurement
performed by the environment on the open system. The final state is a mixture of the
measured-observable eigenstates. Here it’s the molecule conformation that is measured.
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4.2.3 Overview

The approach presented in Section 4.2.2 is purely qualitative. But this is, as

yet, unavoidable–the composite system of interest is too complicated. This

is also the case with the classical-physics approach (Dill and Chen 1997).

As distinct from the classical models, the model of Section 4.2.2 does not leave

room for the classical pathways in the molecule configuration space, while

there are different ”channels” for the conformation transitions. The adiabatic

approximation provides the local minimums on the energy hypersurface as

the preferred, the decoherence-distinguished stable conformations–an answer

to the Hund’s paradox. The fast decoherence process dissolves the Levinthal

paradox.

From the quantum mechanical point of view, while the occurrence of deco-

herence is expected for the conformation system (Stipulation 1), a rigorous

proof of this expectation is virtually intractable. To this end, a part of the

difficulties24 will be presented and discussed in Chapters 6 and 7. Here we

finish our considerations by comparing the approach of Section 4.2.2 with

some similar models/approaches in the literature.

(Gelin et al 2011) derive a master equation for a molecular aggregate in con-

tact with the heat bath. Their model is similar to the model of Section 4.2.2,

yet with simplification of identical constituents of the aggregate. Adiabatic

approximation is implicit to their model, which couples the aggregate’s CM

system (but not the conformational system) with the environment. In effect,

they obtain a basis for the CM -system’s quantum Brownian-like motion,

while the internal degrees of freedom remain purely quantum mechanical.

This result is a consequence of a number of approximations, notably of the

assumption that all the constituents are mutually identical (chemically and

physically). Due to the absence of solutions to the master equation, they do

not tackle either the Hund’s or the Levinthal paradox.

24The main difficulty is the fact that the protein molecules in the living biological cells
are far from the thermodynamic equilibrium.
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In a recent paper (Luo and Lu 2011), the authors consider the quantum

mechanical transitions of the protein conformations for the different temper-

ature regimes. The QCM molecule structure is of interest. This approach

regards the thermodynamic description (Section 4.2.1) while assuming exis-

tence of the definite (the initial and the final) conformation. So, they don’t

even tempt to answer the Hund’s paradox.

On the other hand, recent papers (Trost and Hornberger 2009, Bahrami et al

2012) consider the Hund’s paradox for the quantum-mechanical counterpart

of the ChM structure, but exclusively for the small-molecules chirality, while

leaving the configuration transitions issue (and the Levinthal paradox) intact.

Complexity of the occurrence of decoherence for small molecules suggests

virtual intractability of the same issue for the large molecules (Stipulation 1).

A similar quantum mechanical approach to Hund’s problem can be found in

(Jona-Lasinio and Claverie 1986, Amann 1991). Therein, interaction with the

environment is designed so as to provide decoherence, while the microscopic

and structural considerations are completely left out. The authors don’t even

try to describe the configuration transitions.

4.3 Quantum structures in context

Probably the main lesson of Section 4.2.2 is a need for a proper selection of the

degrees of freedom (of a subsystem of a composite system)–the conformation

KN system can be compared with the molecules conformation-systems for the

ChM and SSM models. This is achieved by performing the proper LCTs in

conjunction with adiabatic approximation. Notice that the LCTs are applied

locally to the system of atomic nuclei by introducing the CMN and RN subsys-

tems, and then by the ”fine graining” of the RN system to introduce the RotN

and KN subsystems: {1n, 2n, ...} → {CMN , RN} → {CMN , RotN , KN}.

There is a chain of the molecule-structure transformations (compare to eqs.

44



(41), (42))25:

SQCM = {1e, 1n, 2e, 2n, ...} electrons−grouping−→ {1E, 1n, 2E, 2n, ...} nontrivial−→
{1CM, 1R, 2CM, 2R, ...} introd−excit−→ SSSM = {1CM, 1ex, 2CM, 2ex, ...}
negl−excit−→ SChM = {1, 2, ...}. (57)

Every step in eq.(57) is subject to quantum correlations relativity, Section 3.2.

So, there is not direct transition of conclusions from one to another structure.

Nevertheless, due to the small mass ratio me/mn, the atomic center of mass

is close to the atomic nucleus position (e.g. 1n ≈ 1CM ≈ 1 for the structures

appearing in eq.(57)). Bearing this (i.e. eq.(53)) in mind, we can hope, that

Section 4.2.2 provides a qualitatively useful description of the conformation

stability and transitions also for the ChM and SSM structures. However, this

conclusion does not directly apply to the electrons system–cf. eq.(46)–as well

as to channelling the conformation transitions.

From eq.(53) we can see, that the external influence exerted on the electrons

system E, or on the rotational degrees of freedom RotN , can also influence the

molecule conformation KN system. The details regarding the preferred con-

figuration states (the configuration ”pointer basis”) as well as a scenario re-

garding the electrons-system mediated configuration transitions can be found

in (Jeknić-Dugić 2009a,b).

On the other hand, from eq.(42), the only way indirectly to influence con-

formation for the SSM structure, is, to externally induce interaction between

the {CMα} and the excitation systems (Caspi and Ben-Jacob 2000). Even

this possibility is absent for the ChM model, for which the only way to change

conformation is directly to target the conformation system (Jona-Lasinio and

Claverie 1986, Amann 1991).

Our considerations do not exhaust the list of the possible molecule struc-

25Of course, 1E +1n = 1CM +1R = 1CM +1ex are the different decompositions of the
one and the same atom denoted 1.
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tures26, neither the list of the possible ways to manipulate the molecule de-

grees of freedom. Similarity of the effects as well as the quantum correlations

relativity, Section 3.2, suggest that the realistic experimental situations are

hardly structurally as clear and neat as our (idealized) theoretical formula-

tions.

26Subtlety of the molecular structures are also presented in (Michal Svrček, 2012). Re-
garding the foundations and limits of the adiabatic approximation, see (Gribov and Magar-
shak 2008, Dugić and Jeknić-Dugić 2009a).
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Chapter 5

Realistic Physical Structures

It is a universal physical fact: of a composite system, only a fraction of the

degrees of freedom is practically accessible (Giulini et al 1996, Zurek 2003,

Schlosshauer 2004, Nielsen and Chuang 2000). The classical, macroscopic

bodies are described by their spatial shape and orientation. In formalism,

those are the ”collective” variables of the center of mass and the Euler angles.

Internal degrees of freedom are not directly observable and provide a basis

for the macroscopic-bodies temperature and radiation.

Quantum mechanical systems (atoms, molecules etc.) are also described by

the center-of-mass and the relative-positions degrees of freedom. These de-

grees of freedom are presented by eq.(4) and by the rhs of eq.(5). Manipulat-

ing these degrees of freedom makes them realistic in the operational physical

sense. Bearing Chapters 2 and 3 in mind, in this chapter, we provide a fresh

view of some well known experimental situations and we highlight operational

reality of the CM and R degrees of freedom.

5.1 Relativity of ”local operations”

The concept of ”structure” assumes locality of the subsystems degrees of

freedom. Manipulating the subsystems degrees of freedom assumes their

(local) accessibility.

”Locality” is structure dependent, Section 2.4 (not necessarily incorporating

the relativistic locality). ”Local operation” assumes non-disturbance of the
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rest, which is a part of the same structure of the composite system. In

quantum information science, ”local operations” are presented e.g. by the so-

called ”local operations and classical communication” (LOCC) procedures.

Formally, local operations are defined by the ”single-particle” operators of

the form A ⊗ I. e.g. The center of mass position, XCM , eq.(4), takes the

form XCM⊗IR relative to the CM+R structure, but for the 1+2 structure, it

takes the form (m1/M)x1⊗I2+(m2/M)I1⊗x2. So for the CM+R structure,

XCM is a local, while for the 1+2 structure, it is a ”collective” (”composite”)

observable. Direct measurement of XCM is supposed not to disturb the R

system, while partially disturbing both the 1 and 2 systems. On the other

hand, XCM can be indirectly measured by directly measuring x1 and x2, and

then, according to eq.(4), to calculate XCM . However, due to eq.(4), such

measurement provides information also about the R system and is therefore

not local. The told equally refers to arbitrary observable of the composite

system. For instance, x1 can be indirectly measured by directly measuring

XCM and rR. Therefore, the concept of ”local observable/operation” as well

as of the ”composite observable/measurement” is structure dependent–the

electron’s position ~re in the hydrogen atom is a collective observable relative

to the atomic CM + R structure. Formally, there is nothing ”more local”

regarding the electron’s position, ~re, than regarding the CM position, ~RCM .

Whether an observable is accessible to measurement in a given physical situ-

ation is a separate question (Zanardi 2001, Harshman 2012a). Here we adopt

the following:

Def.5.1 ”Accessibility” of an observable of a system assumes a measurement

procedure, which does not make use of any indirect measurement, i.e. mea-

surement of other observables of the system.

Inaccessibility of a macroscopic-system center-of-mass is at the root of the

classical prejudice on the transformations of variables, Section 2.1. e.g. For

the classical systems, the formal CM system pertains to an empty point in
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space, not to a physical object27.

The most of the realistic quantum measurements employ detection of quan-

tum particles. e.g. In atomic and molecule spectroscopy, the photon field

is accessible (directly measured, detected). This detection provides an (in-

directly acquired) information about the atomic (molecule) internal energy

and state. This is a local operation relative to the atomic CM + R struc-

ture, but is a global operation relative to the e+ p structure. Mechanism of

quantum measurements, even the simplest ones, is not yet known. So Def.5.1

does not refer to such details. Rather, Def.5.1 assumes, that measurement

of an observable does not assume or reveal the values of the observables28

of any other system. Hence ”accessibility” requires locality of measurement

but is more stringent: it also requires absence of information about any other

observable.

Accessibility (direct measurement) of the hydrogen-atom’s electron’s and the

proton’s positions, ~re and ~rp, provides indirect measurement of the atomic

CM and R positions. This is, of course, a local operation relative to the

atomic e + p structure, but is a global operation relative to the CM + R

structure. So we emphasize the following universal physical fact: accessibil-

ity of an observable of a quantum system is a matter of a specific physical

situation, which is defined by the choice of the ”apparatus” and of its initial

state. An example of accessibility, which is determined by the environment

characteristics, can be found in Section 7.3.

The concept of locality now emphasizes subtlety of the concept of ”multi-

particle entanglement (correlation)” (Brus 2002, Facchi et al 2006, Wichterich

2011, Bellomo et al 2011). Consider a system C of N non-identical particles.

Its Hilbert state space H = ⊗N
i Hi and the state |Ψ〉 =

∑

i1,i2,...iN
Ci1i2...iN ⊗N

j=1

|φij〉j; |φij〉j is the ith state of the jth particle. A bipartition C = A + B

27You cannot move a pair of apples by hitting their center of mass. In order to measure
the apples CM position, you need to perform measurement of the apples’ positions, and
then to calculate the apples CM position.

28All but those that can be trivially linked with the measured one.
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determines the factorization HA ⊗ HB and the state |Ψ〉 =
∑

i ci|i〉A|i〉B,
which is given in the Schmidt canonical form. The point to be emphasized:

bipartition A + B is comparable with a pair of unstructured particles. In

other words: there is no a priori more entanglement in the A + B structure

than in a state |Ψ〉 =
∑

i ci|i〉1|i〉2 for a pair of unstructured particles 1 and

2. However, this similarity fades if the A’s and B’s structures are taken into

consideration. In this case, the task of ”multi-particle correlations” refers

to the correlations of a numerous set of particles belonging to the different

partitions (A and B, respectively).

Measurements of observables that are local relative to the structure of interest

may reveal quantum correlations in that structure. So, e.g., measurement of

an obsevable Â that is sensitive to the A-block’s structure is not necessarily

useful for detecting entanglement for the A+B partition (regarding the above

Schmidt form, |Ψ〉 =∑i ci|i〉A|i〉B). Detecting ”multi-particle” entanglement

refers to entanglement between the pairs of particles, 1 and 2, which belong

to A and B, respectively.

Hence, relativity of the concept of locality calls for caution: in order for

the observable Â be insensitive to the A’s structure, it must be ”collective

observable” relative to the constituent particles of the A system. Whether

the Â observable pertains to another structure of the composite system C is

irrelevant29.

5.2 Manipulating the center of mass

The most of the realistic manipulations of the atomic species refer to the

atomic CM + R structure, see e.g. the rhs of eq.(58). In this section

we are interested in actions that can be clearly expressed in terms of the

atomic/molecule CM system–which includes the actions not affecting the

29Plenty of the observables, e.g. the Hamiltonian, are ”absolutely collective (non-local)”,
in the sense that they cannot be local for any partition. However, ”insensitivity to structure”
is subtle and poses the following question: are there ”intensive” quantum observables, which
are both ”absolutely non-local” and structure insensitive?
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atomic R system. Of course, such actions are precluded in the classical

physics realm [see Footnote 27].

”Two types of degrees of freedom have to be considered for an atom: (i)

the internal degrees of freedom, such as the electronic configuration or the

spin polarization, in the center-of-mass reference frame; and (ii) the external

degrees of freedom, i.e. the position and momentum of the center of mass of

the atom.” (Cohen-Tanoudji and Dalibard 2006).

Electromagnetic forces and trapping (of charged or neutral particles), atomic

laser and lithography, atomic interferometry, refer to the atomic CM system.

For certain purposes, one can forget30 about the internal degrees of freedom

and consider an atom as a point-like particle with the total (center-of-mass)

atomic mass M 31. Temperature of an atomic gas (in thermal equilibrium) is

defined by statistical distribution of the atomic-CM momentums (velocities)–

the internal atomic structure is not of interest. Nevertheless, this picture is

strict only for a gas of atoms on sufficiently high (e.g. room) temperature.

For lower temperatures, the atomic CM system can be described e.g. by a

wave packet (rather than by a point-like particle)–the quantum effects become

relevant. This is still a particle-like description of the atoms in a gas. Temper-

ature of the gas defines the average the de Broglie wavelength of the atomic

CM systems–thus providing a quantitative criterion for the particle-like ver-

sus the wave-like behavior of the atomic CM systems. At sufficiently low

temperature one can no longer distinguish the individual-atoms’ center-of-

mass systems from each other–e.g., in the Bose condensate, the CM systems

of all atoms have the same wave-function.

Conceptually the same physical basis apply to the cooling of molecules: a

molecule gas is cooled if the molecules center-of-mass systems are sufficiently

slow in the laboratory reference frame (M. Zeppenfeld et al 2012)–there are

no specific conditions that are imposed for the atomic internal degrees of

30Of course, ignorance about some degrees of freedom is not equivalent with the locality
of measurement, Section 5.1.

31See the ChM molecule model in Section 4.1.
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freedom.

Experimental observation of diffraction and decoherence of large molecules

is striking an effect (Hackermuller et al 2003, Hackermuller et al 2004). An

obvious motivation for doing experiments with matter waves is the everyday

experience that physical bodies do not at all spread out like waves; rather

they have a well-defined position whenever they are observed. Of course, the

center-of-mass position is of interest.

Micro- and nano-mechanical resonators are macroscopic systems–they can be

seen with the naked eye. Nevertheless, center of mass of these systems can

be modelled as a harmonic oscillator, which can undergo the quantum Brow-

nian motion dynamics (Gröblacher et al 2013)32. Indirect observation of the

CM dynamics can reveal non-Markovian characteristics of the environment,

which monitors the CM system. Although the study is performed at room

temperature, it can be directly applied to other mechanical resonators that

operate close to the ”quantum regime”.

5.3 Manipulating the relative positions

In this section we consider the physical situations that can be clearly de-

scribed in terms of the atomic/molecule R system–which includes the situ-

ations in which the corresponding CM system is not affected. Direct ma-

nipulating the internal degrees of freedom cannot be even defined in classical

mechanics [see Footnote 27].

Typically, internal degrees of freedom are indirectly observed–e.g. by detect-

ing the emitted radiation. This detection is all about the atomic/molecule

spectroscopy. Atomic (molecule) excitation and de-excitation can be consid-

ered without taking the CM system into account. This, however, is not the

only possibility. Accessibility (direct measurement, Def.5.1) of the ”relative”

degrees of freedom has recently been theoretically (Rau et al 2003, Dunning-

ham et al 2004) and also experimentally (Maeda et al 2005) considered.

32See Section 6.3.2 for some technical details.
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In (Rau et al 2003), the authors come to the following conclusion:

”Thus, we have a consistent definition of relative position that implies that

relationships between objects, rather than coordinates and absolute variables,

are fundamental in the quantum world.”

Furthermore, they extend their observation for every pair of mutually con-

jugate observables: ”This suggests that some form of entanglement-driven

localization might occur for any pair of relative conjugate observables.”. In

(Dunningham et al 2004), physical reality of the relative position is claimed:

”We have discussed how light scattering from delocalized quantum particles

can lead to the emergence of ’classical’ relative positions. This process oc-

curs even though the absolute positions of the particles remain undefined and

suggests that the natural spatial framework for such a system is relative posi-

tion.”

Furthermore, the authors (Dunningham et al 2004) claim non-disturbance of

the particles CM system. That is, they consider a purely local action exerted

on the R system.

In an experiment targeting the ”atomic electron orbit”, (Maeda et al 2005),

the authors say:

”Nonetheless, our intuitive picture of an atom is an electron moving in a

Kepler orbit about an ionic core.... Using picosecond or femtosecond laser

pulses, it is now straightforward to create wave packets of atoms of high prin-

cipal quantum number n, in which the electrons move in Kepler orbits ...

However, adding a small oscillating field at the orbital frequency can phase-

lock the motion of the electron to the oscillatory field (5-11), such that the lo-

calization of the electron persists at least for thousands of orbits (11)–perhaps

long enough to actually use these classical atoms in applications such as in-

formation processing (12).”

While the phrases that describe the experimental findings are in terms of

”electron orbits”, the theoretical basis is clearly presented in terms of the

atomic R degrees of freedom. Bearing in mind that, in the experiment, the
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atomic CM degrees of freedom are assumed to remain intact, with the aid

of Section 5.1, we realize that the experiment is another instance of direct

manipulation with the atomic R system.

Regarding the large-molecules species, the conformation KN , Section 4.2.2,

represents the internal degrees of freedom. These degrees of freedom are at

the core of stereochemistry as well as of the foundations of the biopolymer

dynamics, e.g., in the protein (un)folding and molecular recognition. Manip-

ulation of the large-molecules conformation with light is by now a routine

(Lendlein et al 2005).

5.4 Entanglement relativity in use

Entanglement relativity (or the more general quantum correlations relativity)

is in direct use via ”entanglement swapping” (Bennett et al 1993, Ma et

al 2012), (and the references therein), and via ”coarse graining” (Ragy and

Adesso 2012) structural transformations. Entanglement swapping is formally

a trivial kind of LCTs–regrouping of subsystems, Section 2.2.1, point (A). It

is global, in the sense of Section 2.2.1, point (B). On the other hand, grouping

(”coarse graining”) or decomposing (”fine graining”) the subsystems are also

trivial but local kinds of LCTs.

In (Ma et al 2012), the authors consider an entanglement-based variant (Peres

2000) of the gedanken ”delayed choice” experiment (Wheeler 1978). At first

sight, it may seem that this is a delayed choice in the original Wheeler’s

spirit. However, this is not the case. The theoretical proposal (Peres 2000)

as well as the experimental realization (Ma et al 2012) target entanglement

[via entanglement swapping], rather than the individual qubits, in a system

of four qubits. In the experiment it is clearly demonstrated: there is not

individuality of the single qubits or of the pairs of qubits; see also (Dugić

2012). Rather, the effects due to entanglement of the different bipartitions

of the system of four qubits are experimentally observed. In other words:

the object of investigation is entanglement of different pairs of qubits, not
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the individual qubits. Depending on the choice of the pair of qubits to be

measured, the remaining pair of qubits appears in entangled or in a separable

pure state. Such a measurement in a later instant apparently changes the ini-

tially obtained record on entanglement of the pair of qubits. This intuitively

paradoxical situation is described in the theoretical proposal (Peres 2000):

”The point is that it is meaningless to assert that two particles are entangled

without specifying in which state they are entangled, just as it is meaningless

to assert that a quantum system is in a pure state without specifying that

state [9]. If this simple rule is forgotten, or if we attempt to attribute an

objective meaning to the quantum state of a single system, curious paradoxes

appear: quantum effects mimic not only instantaneous action-at-a-distance

but also, as seen here, influence of future actions on past events, even after

these events have been irrevocably recorded.”

However, once Entanglement Relativity is properly understood, the above

quote can be re-phrased as follows: The point is that it is meaningless to

assert that two particles are entangled without specifying the structure of

interest. Even for a specified (pure) state of the system of qubits, entangle-

ment may or may not be observed depending on the structure distinguished

by the chosen (local to that structure) measurement to be performed in a

later instant in time. Once again, we can say: entanglement is a structure-

dependent, i.e., a relative notion.

”Coarse graining” of a composite system’s structure is the ”particles group-

ing” kind of LCTs. Recently, a ”coarse grained” picture of the ”ghost imag-

ing” technique has been analyzed (Ragy and Adesso 2012). The authors

analyzed the nature of correlations in Gaussian light sources used for ghost

imaging from a quantum informational perspective, combining a microscopic

with an effective coarse-grained description. A transition from the micro-

scopic modes ai to the coarse grained two-mode boson operators, c1, c2, pro-

vides a striking observation. The findings are described as follows:

”This reveals an interesting feature associated to the coarse-grained formalism
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put forward here. It actually indicates how the quantum nature of the light

source becomes quenched as we diverge from the photon-counting regime and

enter the classical limit of intensity correlations. For these high illuminations,

the quantum correlations available for detection by our scheme tend to zero,

and the physical model of the scheme does not require a quantum description

of the light to be accurate.”

So, the authors observe a transition from quantum to classical regime in the

ghost imaging technique as a consequence of averaging of the coarse-grained

structure of the light source. The authors properly interpret their finding–not

yet emphasizing the quantum correlations relativity–, while not discussing a

need to perform averaging of the field modes. So, this is not a solution to the

problem of the transition from quantum to classical. Nevertheless, this is a

very important contribution to this long-standing issue (Giulini et al 1996,

Zurek 2003, Schlosshauer 2004): the observed transition is not known for the

original (non-coarse-grained) degrees of freedom.

Both kinds of the LCTs considered are classical in spirit. In classical physics,

the subsystems (”particles”) are assumed to have individuality that is not

jeopardized by the formally trivial LCTs of decomposing/(re)grouping the

particles. Some groups of particles may be additionally charged by certain

(local) boundary conditions to appear in bound states, like in the Chemical

Model of molecules, Section 4.1. However, quantum correlations relativity,

Section 3.2, substantially changes the picture as it is emphasized throughout

this book. Bearing in mind the classical spirit of decomposing/(re)grouping

systems, it is not surprising that this kind of LCTs is the main kind of

structure transformations that are considered in the literature so far. Physical

relevance of the more general ones (such as those to be presented in Chapters

6 and 7) is yet to be appreciated.
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5.5 Outlook

The classically artificial, ”collective”, CM + R structure proves itself oper-

ationally realistic in the quantum realm33. Laboratory manipulation makes

these degrees of freedom at least as realistic as the ”fundamental” degrees of

freedom of a composite quantum system. If it were not so, we would have al-

ready been able more-or-less directly to observe the fundamental constituents

of the matter.

Loss of individuality of quantum subsystems as well as quantum correla-

tions relativity and relativity of locality, Section 2.4, provide a consistent

view of this phenomenological fact. There is nothing ”artificial”, ”collec-

tive” or ”emergent” in the quantum center-of-mass and internal-degrees of

freedom. Rather, physical situation defines a specific set of local degrees of

freedom (and observables) that are operationally accessible. A set of such

observables defines the local subsystems and related (composite system’s)

operationally preferred structure34 (Zanardi 2001, Zanardi et al 2004, Harsh-

man and Ranade 2011). Foundational issues on the operationally preferred

structure of an open quantum system are subject of Chapter 7. Experimen-

tal confirmation of entanglement relativity gives rise to: (i) it changes our

intuition on ”structure”, and (ii) it opens practical applications of quantum

phenomena that are traditionally considered to be impossible in the classical

physics realm.

33Those subsystems are of general use, for the particles in bound states, as well as for the
free particles.

34As stated in Chapter 2, we are exclusively interested in the composite systems allowing
the tensor-product-structure variations.
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Chapter 6

Parallel Occurrence of Decoherence

Quantum mechanics offers a stunning observation: a quantum whole carries

less uncertainty than its parts. In favor of this observation is relativity of

quantum locality and system as well as of quantum correlations. This is in

sharp contrast with the classical intuition, which knows of ”systems”, their

individuality and distinguishability, separability which became not only the

goal but also ameans for solving the quantum-to-classical-transition problem.

Quantum decoherence is currently the main candidate for establishing the

quantum-to-classical transition (Giulini et al 1996, Zurek 2003, Schlosshauer

2004). The general task of the decoherence program (Schlosshauer 2004)

starts as follows: ”There is a system S that is in (unavoidable) interaction

with its environment E. The composite system, S + E, is subject to the

Schrödinger law.”

This assumption on the pre-defined structure is the very basis of the standard,

actually a bottom-up, approach to decoherence which is fairly presented by

Zurek’s (Zurek 2003):

”In the absence of systems, the problem of interpretation seems to disappear.

There is simply no need for ’collapse’ in a universe with no systems. Our

experience of the classical reality does not apply to the universe as a whole,

seen from the outside, but to the systems within it.”

The idea on predefined structure is classical in its spirit. Furthermore, in the

decoherence context, it leads to a circular reasoning: stipulate a structure,
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and then use decoherence to justify the stipulation. However, bearing in

mind relativity of ”system” and ”locality”, Section 5.1, the following question

appears:

(Q) What might be the physical consequences of the linear canonical trans-

formations on the occurrence of decoherence?

Importance of this [as yet poorly posed] question can be seen from the fol-

lowing quote (Zurek 1998):

”In particular, one issue which has been often taken for granted is looming

big, as a foundation of the whole decoherence program. It is the question of

what are the systems which play such a crucial role in all the discussions of

the emergent classicality. (. . . ) [A] compelling explanation of what are

the systems–how to define them given, say, the overall Hamiltonian in some

suitably large Hilbert space–would be undoubtedly most useful.”

Intuitively, the LCT-induced change of structure may reveal non-trivial ob-

servations regarding the question of ”what is ’system’?” (Dugić and Jeknić

2006, Dugić and Jeknić-Dugić 2008). In a sense, the question (Q) promotes

a new top-down approach to describing composite quantum systems and de-

coherence.

However, the question (Q) is too general and imprecise. Not surprisingly,

answer may depend on the number of the underlying assumptions and/or

variations. To this end, we distinguish the following contexts of the question:

(1) LCTs refer to the closed, or to the open system;

(2) LCTs refer to a few- or to a many-particle system;

(3) Specific choice of the kind and/or of quantum state of the environment;

(4) Interpretation of quantum theory.

”Interpretation” is a subject of Chapter 8. In this Chapter we consider spe-

cific models that refer to the total (closed) system C by mainly following

(Dugić and Jeknić-Dugić 2012). In Chapter 7, we will consider specific mod-

els of open bipartite systems.
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6.1 The task

We are interested in global LCTs. More specifically: we are interested in a

pair of mutually global and irreducible structures, Section 2.2.2.

This kind of structure variation means that LCTs intertwined degrees of

freedom of the S and E system. Instead of the pair S + E, there appears

a new structure S ′ + E ′. We are interested in the continuous variable (CV)

systems; a similar analysis regarding a finite-dimensional system can be found

e.g. in (Fel’dman and Zenchuk, 2012), which is not devoted to the occurrence

of decoherence for the different structures.

Since LCTs preserve the number of the degrees of freedom, equal dimension-

ality of S and S ′ implies equal dimensionality (complexity) of the respective

environments, E and E ′.

For the considered structures, there is a number of features of interest. To

this end, we re-phrase the contents of Section 2.2.2: (i) the structures ir-

reducibility implies that every structure is endowed by its own ”elementary

particles” and their interactions; (ii) the subsystems (e.g. S and S ′) belong-

ing to different structures are information theoretically separated; (iii) There

is neither correlation nor any information flow between the subsystems of the

two structures. In this sense, the two structures appear autonomous rela-

tive to each other. Common for the two structures is the composite system’s

Hilbert space, the Hamiltonian and the unique quantum state in every instant

in time.

Our task now reads as: for the proper LCTs, to investigate the occurrence of

decoherence in the alternate structure S ′ + E ′.

6.2 The obstacles

The above posed task faces some obstacles.

The first obstacle comes from Section 3: every change in the degrees of

freedom typically gives rise to a change in correlation between subsystems–

presence of correlations complicates analysis.
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Derivation of the master equations for an open system S typically assumes

(Breuer and Petruccione 2002, Rivas and Huelga 2011) both the initial tensor

product state, ρS ⊗ ρE, as well as that the environment is a thermal bath,

i.e. ρE = ρth = exp(−βHE)/TrB(exp(−βHE)); HE is the environment’s

Hamiltonian and β = (kBT )
−1 is the standard ”inverse temperature”.

However, there is a direct consequence of the quantum correlations relativity,

Section 3.2: the tensor-product state ρS ⊗ ρE bears correlations for the new

structure, i.e. ρS⊗ρE 6= ρS′⊗ρE′. As a consequence, one directly observes: the
new environment E ′ need not be in thermal state–worse, it’s state need not

be even stationary–see Lemma 6.1 below. Worse, non-factorized initial state

for the ”system+environment” (here: S ′ +E ′) challenges both Markovianity

as well as complete positivity of the open system’s dynamics (Breuer and

Petruccione 2002, Rivas and Huelga 2011, Rodriguez-Rosario and Sudarshan

2011, Brodutch et al 2012)35.

On the other hand, LCTs typically introduce the new interaction terms. So,

one can expect interactions of the constituent particles of the new environ-

ment E ′. This, in general, poses significant technical difficulties in deriving

master equation for the open system (Breuer and Petruccione 2002, Rivas

and Huelga 2011, Breuer et al 2009, Laine et al 2010, Rivas et al 2010a,

Rodriguez-Rosario and Sudarshan 2011, Haikka et al 2011, Brodutch et al

2012).

Thus having in mind the foundations of the Markovian open systems theory

(Rivas and Huelga 2011), the transition {S,E} → {S ′, E ′} can, in general,

pose insurmountable obstacles to solving the task.

However, there is a class of the open-systems models that are immune to

these obstacles–the so-called linear models. This is the subject of the next

section.

35Interestingly enough, the basic method in the field, the so-called Nakajima-Zwanzig
projection method, is inapplicable for the structural considerations, see Section 6.3.4.
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6.3 Quantum Brownian motion

”Brownian motion” is a realistic physical effect for the center of mass of

”Brownian particle” (BP). Internal structure of the particle does not con-

tribute to the Brownian motion effect. For this reason it is legitimate to

forget about the internal BP degrees of freedom, and, for simplicity (without

any loss of generality), to investigate the one-dimensional system, S, which

can be modelled as a free particle or as a harmonic oscillator.

The particle’s environment is usually modelled as a set of non-interacting

linear harmonic oscillators in thermal equilibrium.

6.3.1 The LCTs and the structures of interest

Let us consider a set of three-dimensional particles, which are defined by their

respective position and momentum observables, ~ri, ~pj, where i, j = 1, 2, ..N

enumerates the particles, and [xiα, pjβ] = δijδαβ, α, β = 1, 2, 3.

We introduce the total system’s center of mass and the relative positions,

denoted CM and R, respectively36:

~RCM =
∑

i

mi~ri/M, ~ρRl = ~ri − ~rj, l(≡ {i, j}) = 1, 2, ...N − 1. (58)

The inverse to eq.(58) reads as:

~ri = ~RCM +
N−1
∑

l=1

ωli~ρRl, (59)

with the real coefficients ω.

Regarding the system’s Hamiltonian, there appears the so-called ”mass po-

larization” term [see Supplement]:

MRll′ =
ml+1ml′+1~̇ρRl · ~̇ρRl′

M
=
ml+1ml′+1~pRl · ~pRl′

mlml′M
, (60)

36A generalization of eqs. (4), (5).
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where appear the time derivatives of the relative positions and their scalar

product; [~ρRl, ~pRl′] = ıh̄δll′. The set of the ”reduced masses”:

µl =
ml+1(M −ml+1)

M
. (61)

The kinetic term for every constituent ”particle” preserves the standard form,

e.g.:

TCM =
~P 2
CM

2M
, TRl =

~p2Rl

2µl
. (62)

As elaborated in Supplement, external fields for the original particles become

interactions for the CM and R systems, while the distance-dependent in-

teractions of the original particles become external fields for the R system.

Hence the form of the composite system’s Hamiltonian completely changes–

except the kinetic terms. Nevertheless, the composite system’s Hamiltonian,

H, preserves its general form (compare to eq.(5))

HS +HE +HSE = H = HS′ +HE′ +HS′E′, (63)

where we assume that the open system S is one of the ”original particles”

while the rest constitutes the environment E, and we identify the systems,

CM ≡ S ′ and R ≡ E ′. To this end [as emphasized above]–since the original

open system S and the new one S ′ are of the same number of the degrees of

freedom–the respective environments, E and E ′, are of the same number of

the degrees of freedom.

In the terms of Chapter 2, the considered transformations are structurally

described as follows:

S = {~rS, ~rEi} → S ′ = {~rS′, ~ρE′i}. (64)

So our task (Section 6.1) reads as: to investigate the occurrence of decoher-

ence for some bipartitions of certain models described by the general expres-
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sions eqs.(58)-(64).

6.3.2 The Caldeira-Leggett model

We are interested in the Caldeira-Leggett model (Caldeira and Leggett 1983)

defined by the following Hamiltonian for the ”original” structure S + E:

H =
p2S
2mS

+V (xS)+
∑

i

(

p2Ei

2mEi
+
mEiω

2
Eix

2
Ei

2

)

±xS
∑

i

κixEi ≡ HS+HE+HSE

(65)

Physically, this is a model of a one-dimensional system S immersed in a

thermal bath of mutually non-interacting harmonic oscillators (that are col-

lectively denoted as the environment E). The interaction

HSE = ±xS
∑

i

κixEi (66)

is bilinear and with the strength determined by the coefficients κ; both signs,

±, appear in the literature without making any substantial change regarding

the open-system’s (the S’s) dynamics.

The open system’s dynamics can be described in terms of the open-system’s

state dynamics (the Schrödinger picture), ρS(t), or in terms of the open

system’s-variables dynamics (the Heisenberg picture), xS(t), pS(t).

Typically37, the initial state for the composite system is assumed to be tensor

product, ρS(t = 0)ρE(t = 0). Furthermore, the following ansatz is typically

used (Breuer and Petruccione 2002): the total system’s state in every instant

in time reads

ρS(t)ρE, ρE = exp(−βHE)/TrB(exp(−βHE)), ∀t. (67)

It is also assumed: the environment oscillators are mutually uncoupled (non-

interacting), while interaction of S and E is ”weak”. These simplifications

37For the sake of Markovianity of the particle’s dynamics.
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come from the general open-systems theory: without these simplifications,

the search for the general form of the Markovian master equations becomes

practically intractable (Rivas and Huelga 2011).

For the phenomenologically inspired choice of the environment ”spectral den-

sity”, one obtains the following (high temperature) master equation [in the

Schrödinger picture] for the quantum Brownian motion (QBM):

dρS(t)

dt
= − ı

h̄
[HS, ρS(t)]−

ıγ

h̄
[xS, {pS, ρS(t)}]−

2mSγkBT

h̄2
[xS, [xS, ρS(t)]];

(68)

the curly brackets denoting the anticommutator, {xS, ρS(t)} = xSρS(t) +

ρS(t)xS, and γ representing the phenomenological ”friction” parameter38.

The last term in eq.(68) is the decoherence term. The approximate ”pointer

basis” (i.e. the ”preferred”) states are Gaussian states39.

Physically, Brownian particle undergoes the decoherence process and dissipa-

tion that become obvious in the Heisenberg-picture for the particle’s position

and momentum observables.

Let us now consider the transformations of variables distinguished in Section

6.3.1.

Placing the expressions eq.(58), (59) into the Hamiltonian eq.(65) for one-

dimensional system, one obtains for the alternate structure S ′ + E ′ [while

bearing in mind S ′ ≡ CM and E ′ ≡ R]:

H = HS′ +HE′ +HS′E′, (69)

with the following terms:

HS′ =
P 2
S′

2M
+
MΩ2

S′x
2
S′

2

38As a consequence of the choice of the spectral density.
39Not of the minimal uncertainty.
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HE′ =
∑

i

(

p2E′i
2µi

+
µiν

2
E′iρ

2
E′i

2
+ VE′

)

HS′E′ = ±xS′
∑

i

σiρE′i. (70)

Formally, eq.(70) is similar to eq.(65). Physically, there is another one-

dimensional system S ′ in interaction with a set of the linear harmonic oscil-

lators. The only formal distinction lies in the appearance of the interaction

term VE′ for the constituents of new environment E ′. Interaction in the new

structure, S ′ + E ′, is of the same, bilinear form of eq.(66).

Delving into details, we obtain (Dugić and Jeknić-Dugić 2012) precise defi-

nitions for the terms in eq.(70) for the two cases: the S system as the free

particle, and the S system as a harmonic oscillator40.

Free particle (VS = 0): MΩ2
S′/2 =

∑

i(±κi + mEiω
2
Ei/2), µiν

2
Ei/2 = ±ωSi

∑

j κjωij+
∑

jmEjω
2
Ejω

2
ij/2, and σi =

∑

j(κjωij+κjωSi+mEjω
2
Ejωij). The in-

ternal interaction term VE′ =
∑

i 6=j [CijpE′ipE′j/µiµj + (Ωij + ωSiΩj)ρE′iρE′j];

the ”mass polarization terms” Cij = mE(i+1)mE(j+1)/M and Ωi =
∑

j κjωij,

while Ωij =
∑

kmEkω
2
Ekωikωjk/2.

Harmonic oscillator (VS = mSω
2
Sx

2
S/2): As distinct from the free particle

case, the S system as a harmonic oscillator provides the harmonic term,

which should be simply added to the free-particle Hamiltonian. So the

Hamiltonian for the harmonic oscillator follows from adding the following

term to the free-particle Hamiltonian: mSω
2
Sx

2
S′/2 +

∑

imSω
2
Sω

2
iSρ

2
E′i/2 +

∑

i 6=jmSω
2
SωiSωjSρE′iρE′j/2 + xS′

∑

imSω
2
SωiSρE′i.

The new open system, S ′, is a harmonic oscillator even if the original S

system is a free particle. LCTs inevitably introduce the internal interaction

VE′, which couples the E ′-system oscillators; there are the linear momentum-

momentum and the position-position coupling for the constituents of the new

environment E ′; see Supplement for details.

40By ωiS ≡ ωSi we assume the real parameters appearing in eq.(59).
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6.3.3 S ′ is a Brownian particle

The two forms of the composite system’s Hamiltonian, eq.(65) and eq.(70),

are almost isomorphic. However, this does not per se imply that the dynamics

of the open systems, S and S ′, are mutually equal.

As emphasized in Section 6.2, in general, there is a number of obstacles for

providing master equation for the new open system S ′ that is worth repeating.

First, if the initial state for the S+E structure is tensor product, ρS(t = 0)ρE,

then there are initial correlations regarding the alternate structure S ′ + E ′

(in general, see Section 3.2, there are quantum correlations with non-zero

one-way discord41). As a consequence, the S ′ system’s dynamics may be

non-Markovian (and also non-completely positive). Second, if the original

environment E is initially in thermal equilibrium, this is not the case for

the new one, E ′ [see Lemma 6.1 below]. Third, the ”new” oscillators (sub-

systems of the new environment E ′) are mutually coupled. For interacting

oscillators, the master equation eq.(68) is not necessarily valid–there may be

both memory effects for the environment as well as a change in the spectral

density.

Nevertheless, as we show below, the open system S ′ also undergoes Brownian

dynamics.

Let us first emphasize irrelevance of the VE′ term in eq.(70).

For the new environment E ′, we introduce the ”normal coordinates”, QE′i,

and the conjugate momentums, PE′i, as the new canonical variables:

QE′i =
∑

m

αmixE′m, PE′i =
∑

n

βnipE′n, [QE′i, PE′j] = ıh̄δij. (71)

The choice of the new variables is constrained by the requirement of non-

coupling of the new variables as well as by the commutator in eq.(71). For

the potential VE′, which is of the bilinear form regarding the position and

41Remind: the two-way discord tends to be larger than one-way discord, Section 3.2.
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momentum observables, this is always possible to do. So, the E ′ system can

be considered as a set of mutually noninteracting linear harmonic oscilla-

tors, which are described by the normal coordinates, QE′i in eq.(71), as the

oscillators position-observables. Then instead of eq.(70) one obtains:

HS′ =
P 2
S′

2M
+
MΩ2

S′x
2
S′

2

HE′ =
∑

i

(

P 2
E′i

2
+
λ2iQ

2
E′i

2

)

HS′E′ = ±xS′
∑

i

σ′iQE′i. (72)

where the new coupling constants σ′i =
∑

j α
′
ijσj; here we use the inverse to

eq.(71), xE′i =
∑

j α
′
ijQE′j.

Thus we have performed the following global42 (non-trivial, irreducible43)

change in the new-environment’s structure:

SE′ = {xE′i} → S ′E′ = {QE′i}, (73)

while the environment Hilbert state space now obtains new factorization,

HE′ = ⊗iH(Q)
E′i , and the environment a set of mutually noninteracting oscil-

lators, eq.(72). Thereby, in this step, the total system has undergone the

following local structure transformation:

S = {xS′, xE′i} → S ′ = {xS′, QE′i}, (74)

which now makes the two forms of the Hamiltonian, eq.(65) and eq.(72), fully

isomorphic.

The open system’s state, ρS′, is defined by the tracing out operation, ρS′(t) =

trE′ρS′+E′(t)–the ”trE′” operation is taken over the whole Hilbert space of

42If we bear the S system in mind, the transformation is, of course, local.
43See Section 2.2.
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the E ′ system. The basis-independence of the tracing out operation can be

represented e.g.

trE′AE′ =

∫

〈{xE′i}|AE′|{xE′i}〉ΠidxE′i =

∫

〈{QE′i}|AE′|{QE′i}〉ΠidQE′i

(75)

for the different structures of E ′; |{xE′i}〉 = ⊗i|xi〉E′, |{QE′i}〉 = ⊗i|Qi〉E′.
So, eq.(75) clearly states: the open system’s state, ρS′(t), is unique, i.e. is not

environment-structure dependent. Therefore dynamics of the open system

S ′ [e.g. derivation of the related master equation] is not conditioned by the

choice of the E ′-system’s structure.

Now we return to the consequences of QCR, Section 3.2. As emphasized

above, a change of the open system’s structure will in general lead to a change

in form of the system’s quantum state, as well as in the amount of quantum

correlations carried by the state. However, there are the following special

cases: (a) the composite system is at zero temperature (T = 0), and (b)

the composite system is at nonzero temperature T . These cases are actually

known and investigated, e.g. in (Paz 1996, Bellomo et al 2005, Anglin et al

1997).

Exact solutions to the Schrödinger equation for the Hamiltonian eq.(65), i.e.

eq.(72), are not yet known. Nevertheless, for the case (a), it is known that

the ground energy state is non-degenerate (i.e. is unique) and entangled for

the bipartition, ”system+environment” system. Regarding the case (b): at

non-zero temperature, the total system’s state

ρ =
e−βH

Z
, Z = tre−βH (76)

where H is the total system’s Hamiltonian, for the canonical ensemble; β is

the ”inverse temperature”. Of course, the state eq.(76) is non-factorized.

The following point should be strongly emphasized: all the conclusions refer-

ring to the cases (a) and (b) equally concern to both structures, S + E and
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S ′ + E ′. e.g. The Hamiltonian H appearing in eq.(76) is given by eq.(65)

for the S + E and by eq.(72) for the S ′ + E ′ structure. So for the cases (a)

and (b), the two model-structures are formally fully isomorphic. The phys-

ical distinctions between the two structures–correlations in the initial state

for the new structure, and non-stationary state of the new environment–are

known not to change the physical picture (Lutz 2003, Romero and Paz 1996,

Bellomo et al 2005, Anglin et al 1997). Hence we can conclude that (Dugić

and Jeknić-Dugić 2012):

The ”new” open system, S ′, is a Brownian particle itself.

The case of the initially non-equal temperatures of the open system S and

the environment E is not easy to handle44. In such case, as emphasized

above, due to QCR, the two models are not fully isomorphic45. Along with

the existing literature, here we do not tempt to offer a general description of

this situation. Nevertheless, we offer a scenario that is a speculative physical

picture, which bears some generality compared to the non-realistic ansatz

eq.(67) for the S + E structure.

Having in mind Section 6.2 and eq.(70), we collect the constraints for deriving

master equation for the S ′ system. First, from eq.(70), we can see that

interaction HS′E′ is of the strength of the order of HSE, i.e. it’s weak. From

Section 6.2 we learn that the initial state for the S ′+E ′ structure is in general

a mixture ρS′+E′(t = 0) =
∑

i λiρS′i⊗ρE′i. Thus one cannot adopt Markovian

approximation for the S ′ system (Rivas and Huelga 2011). Having in mind

that the S and S ′ are one-particle systems, the two environments E and E ′

are also of equal dimensionality (of equal number of oscillators).

Then we start from eq.(3.113) of (Breuer and Petruccione 2002) [in the in-

44See Section 6.3.4.
45It is worth noticing: this situation refers physically to the situation, in which the open

system is suddenly brought in touch with the thermal bath.
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teraction picture]:

dρS′(t)

dt
= −

∫ t

0

dstrE′[H
I
S′E′(t), [H

I
S′E′(s), ρS′+E′(s)]]. (77)

Without further ado, we resort to the following ansatz:

ρ(t) = (1− ǫ◦(t))
∑

i

σt>t◦
S′i σE′◦+

∑

i

ǫi(t)σ
t>t◦
S′i δ

t>t◦
E′i , trE′δ

t>t◦
E′i = 1, ∀i, t, (78)

where |ǫ(t)| ≪ 1, ǫ(t) = max{ǫi(t)}, ∀t > t◦.

Physically, eq.(78) means: the environment E ′ undergoes thermal relaxation

much faster than the open system S ′. From eq.(78): ρE′ ≈ σE′◦ after some

instant t > t◦ [the initial instant is assumed t = 0]. The open system’s state

ρS′(t) ≈
∑

i σS′i(t), t > t◦.

Further, instead of the total environment E ′, we consider a small part of the

E ′ system that should appear in eq.(78). Namely, we divide E ′ = E ′1 + E ′2,

where the part E ′2 monitors E ′1 and does not interact with the S ′ system46.

Then eq.(78) reduces to the standard ansatz eq.(67): if the limit ǫ → 0 is

available for the time intervals of γ−1, then eq.(78) reduces to ρS′(t)σE′1◦; γ is

the E ′1-system’s relaxation rate.

Substituting eq.(78) into eq.(77):

dρS′(t)

dt
≈ −

∫ t

0

dstrE′1[H
I
S′E′1

(t), [HI
S′E′1

(s), ρS′(s)⊗ σE′1◦]]. (79)

If we assume thermal state for the E ′1 environment, σE′1◦ = ρth, then eq.(79)

strongly suggests applicability of the Markov approximation47 and hence the

46One can think of this tripartition in analogy with the DISD method of (Dugić 2000).
47Remind: the environment state σE′

1
◦ is thermal–no state change in eq.(79) for the

environment (except in very short time intervals). The exact form of eq.(79) contains non-
Markovian corrections that are, according to the ansatz eq.(78), assumed to be small.
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master equation (see (Breuer and Petruccione 2002) for details):

dρS′(t)

dt
≈ −

∫ ∞

0

dstrE′1[H
I
S′E′1

(t), [HI
S′E′1

(s), ρS′(t)⊗ ρth]], (80)

which is formally the starting point for deriving the master equation eq.(68)–

but this time for the S ′ system. So, again, we obtain the above-brought

conclusion, which is the title of this section.

Eq.(80) is approximate (|ǫ(t)| > 0) and valid for the time instants t > t◦.

Nevertheless, it’s applicable for arbitrary initial state of the composite system.

Of course, whether or not this plausible derivation may be used in the more

general context remains unanswered as Markovian approximation for the rhs

in eq.(79) is another plausible ansatz, not a rigorous physical condition yet.

6.3.4 A limitation of the Nakajima-Zwanzig projection method

Derivation of eq.(80) assumes Markov approximation, which, as we already

know (Rivas and Huelga 2011), cannot be valid for the S ′+E ′ structure. Nev-

ertheless, plausibility of this simplification stems from the form of the rhs of

eq.(79) as well as from the fact that the neglected term is non-Markovian. So

we hope for approximateMarkovianity of the S ′ system’s dynamics (assuming

that ǫ≪ 1, and only after some time interval t◦).

At first sight, we could have used the methods adapted to description of

non-Markovian dynamics, notably the so-called time-convolutionless method

(Breuer and Petruccione 2002). However, as we show below, this method is

not adapted to the structural considerations.

The Nakajima-Zwanzig projection method is the central method of mod-

ern open quantum systems theory (Breuar and Petruccione 2002, Rivas and

Huelga 2011). It’s the very basis of modern open systems theory and appli-

cation that include the time-convolutionless method.

The key idea behind the Nakajima-Zwanzig projection method consists of the

introduction of a certain projection operator, P , which acts on the operators
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of the state space of the total system ”system+environment” (S + E). If ρ

is the density matrix of the total system, the projection Pρ (the ”relevant

part” of the total density matrix) serves to represent a simplified effective

description through a reduced state of the total system. The complementary

part (the ”irrelevant part” of the total density matrix), Qρ = (I − P)ρ.
For the ”relevant part”, Pρ(t), one derives closed equations of motion in

the form of integro-differential equation. The open system’s density matrix

ρS(t) = trEPρ(t) contains all necessary information about the open system

S. Here, we refer to the mostly-used kind of projection:

Pρ(t) = trEρ(t)⊗ ρE ≡ ρS(t)⊗ ρE (81)

where ρE 6= trSρ for any instant in time. The open system’s state

ρS(t) = trEρ(t) = trEPρ(t)⇔ trEQρ(t) = 0, ∀t; (82)

the Q projector satisfies P +Q = I.

The Nakajima-Zwanzig projection method assumes a concrete, in advance

chosen and fixed, system-environment split (a ”structure”), S + E, which

is uniquely defined by the associated tensor product structure of the total

system’s Hilbert space, H = HS ⊗HE. The division of the composite system

into ”system” and ”environment” is practically motivated. In principle, the

projection method can equally describe arbitrary system-environment split

i.e. arbitrary factorization of the total system’s Hilbert state.

However, our task points out a limitation of the Nakajima-Zwanzig method.

In the more general terms, the task reads as: for a pair of open systems, S

and S ′, pertaining to the different system-environment splits of a composite

system, can the Nakajima-Zwanzig and/or the related projection methods

provide simultaneous dynamical description of the open systems, S and S ′?

The answer is provided by the following theorem:

Theorem 6.1. Quantum correlations relativity precludes simultaneous pro-
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jection-method-based description of a pair of system-environment splits.

Proof: There are only two options for writing the simultaneous master equa-

tions for the S and S ′ systems. First, if the projection adapted to the

S + E structure can be used for deriving the master equation for the S ′

system. Then it is required, that trEPρ(t) = ρS(t) and trE′Pρ(t) = ρS′(t),

i.e. trEQρ(t) = 0 and trE′Qρ(t) = 0 for every instant in time. Second, if

we perform in parallel, i.e. if we use the different projection operators, P
and P ′, for the two structures independently of each other. Then it is re-

quired, trEPρ(t) = ρS(t) and trE′P ′ρ(t) = ρS′(t), i.e. trEQρ(t) = 0 and

trE′Q′ρ(t) = 0 for every instant in time. We use the following lemmas.

Lemma 6.1. Quantum correlations relativity in dynamical terms, for the

mixed states, reads as: ρS(t) ⊗ ρE =
∑

i λiρS′(t) ⊗ ρE′(t). The possible time

dependence of the weights λ is irrelevant.

Lemma 6.2. For the most part of the composite system’s dynamics, trEQρ(t)
= 0 implies trE′Qρ(t) 6= 0, and vice versa.

Lemma 6.3. The two structure-adapted projectors P and P ′ do not mutually

commute and cannot be simultaneously performed.

Lemma 6.1 establishes time-dependence of states of both subsystems, S ′ and

E ′. Bearing eqs.(28)-(29) in mind, we realize that it may happen that there

are only classical correlations for the S ′ + E ′ structure.

Lemma 6.2 establishes: for the most part of the composite system’s dynamics,

projection Qρ (or Q′ρ) brings some information about the open system S ′ (or

S)–in contradiction with the basic idea of the Nakajima-Zwanzig projection

method.

On the other hand, Lemma 6.3 establishes: for any pair of structures, S +E

and S ′ + E ′, one cannot choose/construct a pair of compatible projectors

defined by eq.(81). So Lemma 6.3 precludes simultaneous (for the same time

interval) derivation of master equations for the two open systems, S and S ′.

From Lemma 6.2 and 6.3, it directly follows the claim of the theorem. Q.E.D.
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Thus the Nakajima-Zwanzig projection method faces a limitation. While it

can be separately performed for any structure (either P or P ′), it cannot

be simultaneously used for a pair of structures. Once performed, projection

does not in general allow for drawing complete information about an alter-

native structure of the composite system–projecting is non-invertible (”irre-

versible”).

Our finding refers to all projection-based methods–including the above men-

tioned time-convolutionless method. In formal terms: Lemma 2 implies that,

in an instant of time, dPρ(t)/dt allows tracing out over only one structure of

the composite system. If that structure is S + E, then trE′dPρ(t)/dt 6=
dρS′(t)/dt [as long as ρS′(t) = trE′ρ(t)]. On the other hand, Lemma 3

excludes simultaneous projecting, i.e. simultaneous master equations for

the two structures. E.g., dPρ(t)/dt = dρS(t)/dt ⊗ ρE is in conflict with

dP ′ρ(t)/dt = dρS′(t)/dt ⊗ ρE′: due to QCR, Section 3.2, only one of them

can be correct for arbitrary instant in time.

Despite the fact that quantum correlations relativity can have exceptions for

certain states, our findings presented by Theorem 6.1 do not. Even if QCR

does not apply to an instant in time (i.e. to a special state of the total system),

it is most likely to apply already for the next instant of time in the unitary

(continuous in time) dynamics of the total system C. This general argument

makes the above lemmas universal, i.e. applicable for every Hilbert state

space and every model and structure (the choice of the open systems S and

S ′) of the total system. Hence our findings and conclusions refer to the finite-

and infinite-dimensional systems and to all kinds of the transformations of

variables.

These findings do not present any inconsistency with the open systems the-

ory or with the foundations of the Nakajima-Zwanzig method. Rather, our

findings point out that the Nakajima-Zwanzig projection method has a limi-

tation, i.e. is not suitable for the above-posed task.

Everything told in this section equally refers to the open systems S and S ′
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that are macroscopically ”almost equal”–e.g. in number of their respective

constituent particles. Even if the S ′ system follows from the (local) trans-

formation of joining a single particle of the E system with the S system,

thus obtaining the new S ′ and E ′ systems, the projection method cannot be

straightforwardly used to derive master equation for the S ′ system. Hence we

conclude: there is not a priori a hope that the small changes in the system-

environment split would effect in small changes in dynamics. In other words,

we can conclude: the ”shortcuts” for describing the alternative-open-systems

dynamics may be non-reliable and delicate.

Proof of Lemma 6.1. Without any loss of generality, and in order to eliminate

the weights λ from consideration, consider ρS(t)⊗ρE = ρS′(t)⊗ρE′. Then cal-

culate trxE′, where xE′ = αxS+βxE. Then trxE′ = αtrSxSρS(t)+βtrExEρE,

which is time dependent. On the other hand, trxE′ = trE′xE′ρE′, which is

time-independent. In order to reconcile the two, we conclude that also ρE′

must be time dependent. Q.E.D.

We borrow the proofs of the lemmas from the original paper (Arsenijević et

al 2013b).

Proof of Lemma 6.2. Given trEQρ(t) = 0, ∀t, we investigate the conditions

that should be fulfilled in order for trE′Qρ(t) = 0, ∀t. The Q projector refers

to the S + E, not to the S ′ + E ′ structure. Therefore, in order to calculate

trE′Qρ(t), we use ER. We refer to the projection eq.(81) in an instant of time:

Pρ = (trEρ)⊗ ρE. (83)

A) Pure state ρ = |Ψ〉〈Ψ|, while trEQ|Ψ〉〈Ψ| = 0.

We consider the pure state presented in its (not necessarily unique) Schmidt

form

|Ψ〉 =
∑

i

ci|i〉S|i〉E, (84)

where ρS = trE|Ψ〉〈Ψ| =
∑

i pi|i〉S〈i|, pi = |ci|2 and for arbitrary ρE 6=
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trS|Ψ〉〈Ψ〉. Given ρE =
∑

α πα|α〉E〈α|, we decompose |Ψ〉 as:

|Ψ〉 =
∑

i,α

ciCiα|i〉S|α〉E, (85)

with the constraints:

∑

i

|ci|2 = 1 =
∑

α

πα,
∑

α

|Ciα|2 = 1, ∀i, (86)

Then

Q|Ψ〉〈Ψ| = |Ψ〉〈Ψ| −
∑

i,α

piπα|i〉S〈i| ⊗ |α〉E〈α|. (87)

We use ER:

|i〉S|α〉E =
∑

m,n

Diα
mn|m〉S′|n〉E′ (88)

with the constraints:
∑

m,n

Diα
mnD

i′α′∗
mn = δii′δαα′. (89)

With the use of eqs.(85) and (88), eq.(87) reads as:

∑

m,m′n,n′

[
∑

i,i′,α,α′

ciCiαc
∗
i′C

∗
i′α′D

iα
mnD

i′α′∗
m′n′ −

∑

i,α

piπαD
iα
mnD

iα ∗
m′n′]|m〉S′〈m′| ⊗ |n〉E′〈n′|.

(90)

After tracing out, trE′:

∑

m,m′

{
∑

i,α,n

∑

i′,α′

ciCiαc
∗
i′C

∗
i′α′D

iα
mnD

i′α′∗
m′n − piπαD

iα
mnD

iα∗
m′n}|m〉S′〈m′| (91)

Hence

trE′Q|Ψ〉〈Ψ| = 0⇔
∑

i,α,n

[
∑

i′,α′

ciCiαc
∗
i′C

∗
i′α′D

iα
mnD

i′α′∗
m′n −piπαDiα

mnD
iα∗
m′n] = 0, ∀m,m′

(92)
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Introducing notation, Λm
n ≡

∑

i,α ciCiαD
iα
mn, one obtains:

trE′Q|Ψ〉〈Ψ| = 0⇔ Amm′ ≡
∑

n

[Λm
n Λ

m′∗
n −

∑

i,α

piπαD
iα
mnD

iα∗
m′n] = 0, ∀m,m′.

(93)

Notice:
∑

m

Amm = 0. (94)

which is equivalent to trQ|Ψ〉〈Ψ| = 0, see eq.(87).

B) Mixed (e.g. non-entangled) state.

ρ =
∑

i

λiρSiρEi, ρSi =
∑

m

pim|χim〉S〈χim|, ρEi =
∑

n

πin|φin〉E〈φin|, (95)

In eq.(95), having in mind eq.(83), trEQρ = 0, while trEρ =
∑

p κp|ϕp〉S〈ϕp|,
and ρE =

∑

q ωq|ψq〉E〈ψq| 6= trSρ.

Constraints:

∑

i

λi = 1 =
∑

p

κp =
∑

q

ωq,
∑

m

pim = 1 =
∑

n

πin, ∀i. (96)

Now we make use of ER and, for comparison, we use the same basis {|a〉S′|b〉E′}

|χim〉S|φin〉E =
∑

a,b

C imn
ab |a〉S′|b〉E′, |ϕp〉S|ψq〉E =

∑

a,b

Dpq
ab|a〉S′|b〉E. (97)

Constraints:

∑

a,b

C imn
ab C im′n′∗

ab = δmm′δnn′,
∑

a,b

Dpq
abD

p′q′∗
ab = δpp′δqq′. (98)

So

Qρ = ρ− (trEρ)⊗ ρE =
∑

a,a′,b,b′

{
∑

i,m,n

λipimπinC
imn
ab C imn∗

a′b′
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−
∑

p,q

κpωqD
pq
abD

pq∗
a′b′} |a〉S′〈a′| ⊗ |b〉E′〈b′|. (99)

Hence

trE′Qρ = 0⇔ Λaa′ ≡
∑

i,m,n,b

λipimπinC
imn
ab C imn∗

a′b −
∑

p,q,b

κpωqD
pq
abD

pq∗
a′b = 0, ∀a, a′.

(100)

Again, for a = a′:
∑

a

Λaa = 0, (101)

as being equivalent with trQρ = 0, see eq.(99).

Both eq.(93) and eq.(100) represent the sets of the simultaneously satis-

fied equations. We do not claim non-existence of the particular solutions

to eq.(93) and/or to eq.(100), e.g. for the finite-dimensional systems. We

just emphasize, that the number of states they might refer to, is apparently

negligible compared to the number of states for which this is not the case.

For instance, already for the fixed a and a′, a small change e.g. in κs (while

bearing eq.(96) in mind) undermines equality in eq.(100).

Quantum dynamics is continuous in time. Provided trEQρ(t) = 0 is fulfilled,

validity of trE′Qρ(t) = 0 might refer only to a special set of the time in-

stants. So we conclude: for the most part of the open S ′-system’s dynamics,

trE′Qρ(t) = 0 is not fulfilled. By exchanging the roles of the S and the S ′

systems in our analysis, we obtain the reverse conclusion, which completes

the proof. Q.E.D.

Proof of Lemma 6.3. The commutation condition, [P ,P ′]ρ(t) = 0, ∀t. With

the notation ρP (t) ≡ Pρ(t) and ρP ′(t) ≡ P ′ρ(t), the commutativity reads

as: PρP ′(t) = P ′ρP (t), ∀t. Then, PρP ′(t) = trEρP ′(t) ⊗ ρE = ρS(t) ⊗ ρE,

while, according to Lemma 6.1, P ′ρP (t) = trE′ρP (t) = σS′(t)⊗σE′(t). So, the
commutativity requires the equality σS′(t)⊗σE′(t) = ρS(t)⊗ρE, ∀t. However,
quantum dynamics is continuous in time. Like in Proof of Lemma 2, quantum

correlations relativity guarantees, that, for the most of the time instants, the
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equality will not be fulfilled. Q.E.D.

6.4 The LCTs preserve linearity of a composite-system’s model

Physically, the structure S ′ = {xCM , QRi}–Brownian particle is the total

system’s center of mass, while the environment is composed of the normal

modes for the relative positions for the original structure S+E. Nevertheless,

the S ′ structure is not very special. The procedure presented in Sections 6,3,2

and 6.3.3 is applicable formally for arbitrary LCTs eq.(6). In other words:

linear canonical transformations preserve linearity48 of the original structure

S + E. The whole structural transformation can be presented as:

S◦ = {xS, xEi} → S = {xS′, xE′i} → S ′ = {xS′, QE′i}, (102)

for every LCT eq.(6).

However, there are certain constraints for the LCTs, in order to make the

alternate structure physically sensible. For the case presented in Section 6.3,

the constraints are: MΩ2
S′ > 0 and µiν

2
E′i > 0, ∀i. The analogous constraints

appear for all the alternate structures. Thereby the physical relevance of the

alternate structure S ′ is not unconditional.
The ”linear model” refers also to some other physically relevant models. e.g.

In (Bellomo et al 2005), a [non-relativistic] charged particle is embedded in

the electromagnetic-field modes at zero temperature. Interestingly enough,

initial state of the total system is correlated, and is shown that decoherence

is related to the time dependent ”dressing” of the particle. A similar analysis

(of a linear model) is provided by (Stokes et al 2012) with the explicit LCTs

performed on the total system ”atom+EM-field”. An emphasis is placed

on the range of validity of the quantum optical master equations for the

composite system; for details see Section 7.3.

48”Linearity” means that the Hamiltonian is quadratic, with the bilinear interaction,
eq.(66), and uncoupled environment oscillators.
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Here we do not elaborate on this any further. The reason is probably ap-

parent: depending on the choice of LCTs, i.e. of the new variables and the

related parameters range, the results may vary–i.e. are case dependent. Sub-

tlety and complexity of investigating the occurrence of decoherence is fairly

expressed by (Anglin et al 1997) [our emphasis]:

”In this paper we will effectively argue that many perceived universalities in

the phenomenology of decoherence are artifacts of studying toy models, and

that the single neat border checkpoint should be replaced as an image for de-

coherence by the picture of a wide and ambiguous No Man’s Land, filled with

pits and mines, which may be crossed on a great variety of more or less tor-

tuous routes. Once one has indeed crossed this region, and travelled some

distance away from it, the going becomes easier: we are not casting doubt

on the ability of the very strong decoherence acting on macroscopic objects

to enforce effective classicality. ... By presenting a number of theoretically

tractable examples in which various elements of phenomenological lore can be

seen to fail explicitly, we make the point that each experimental scenario will

have to be examined theoretically on its own merits, and from first princi-

ples.”.

Nevertheless, as emphasized above, there is the following, generally valid, ob-

servation: linearity of the total system’s model is preserved by linear canonical

transformations. Encouraged by Section 6.3, we dare to state the following

Conjecture 1. For the linear models one can expect in principle the occur-

rence of decoherence also for some alternate degrees of freedom, which are

provided by the linear canonical transformations.

6.5 More than one ”classical world”

Section 6.3 teaches us: if the open system S is a Brownian particle, then also

the open system S ′ is necessarily a Brownian particle. This seemingly naive

observation is physically remarkable.

Every Hamiltonian generates the simultaneously unfolding dynamics for dif-
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ferent structures of a composite system. Of all possible structures, for the

standard QBM model, we distinguish and consider only those emphasized in

Section 2.2.2: mutually global, non-trivial and irreducible structures. In Sec-

tion 6.3, we consider a pair of such structures and find the parallel occurrence

of decoherence for the structures.

The standard ”decoherence program” (Giulini et al 1996, Schlosshauer 2004)

bases itself on the following assumption: quantum decoherence is in the root

of the appearance of ”classical world” in quantum theory. Now, as we elab-

orate below, our result on the parallel occurrence of decoherence suggests:

for a composite (closed) system C, Section 6.3, there are at least two, mu-

tually autonomous and irreducible ”classical worlds”–one classical world for

one structure, i.e. for one Brownian particle49.

In a set of mutually global and irreducible structures, every [physically rea-

sonable] structure50 has the following characteristics:

(a) It is completely describable by the universally valid quantum mechanics;

(b) It has its own set of ”elementary particles” and the interactions between

them, and is (cf. Section 2.2) irreducible and information-theoretically sepa-

rated from any alternative, global and irreducible structure;

(c) It dynamically evolves in time, simultaneously with but totally indepen-

dently (autonomously) of any other structure;

(d) It has its own Brownian particle;

(e) Is locally indistinguishable from the others: an observer belonging to one

(and to only one) structure cannot say which structure he belongs to;

(f) Physically is not, a priori, less realistic than any other.

Thereby, physically, the model-universe C, Section 6.3, hosts more than one

dynamical classical world. As the worlds are mutually global and irreducible,

there is more than one ”classical world” for one and the unique (a single)

49Needless to say, not every structure bears classicality. Therefore ”classicality” of a
physical system is relative–it’s a matter of the system’s structure.

50C = S + E = S ′ + E ′ = ...
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”universe” C. Thereby, if the standard decoherence program provides the

”appearance of a Classical World” (Giulini et al, 1996), our results suggest

the ”appearance of the Classical Worlds”.

This observation challenges foundations of the standard decoherence program

and requires additional interpretational analysis, which will be presented in

Chapter 8.

6.6 A few general notions

The composite system C is closed–a model-universe subject to the Schrödinger

law. For the closed systems, which are not observable from the outside, there

does not seem to exist a privileged fundamental decomposition into sub-

systems (structure). Regarding the open composite systems, see the next

chapter.

Our considerations are explicit only for the linear models. So, the parallel

occurrence of decoherence is in its infancy yet. The natural question whether

or not our considerations can be applied to the more realistic models of the

many-particle open systems here remains unanswered. To this end, see the

quote from (Anglin et al 1997) in Section 6.4.

Of course, instead of decoherence, one can use some other criteria for classi-

cality, i.e. for the ”appearance of the classical world”. e.g. One can use the

absence of non-classical correlations as such a criterion. An example in this

regard for an open system is given in Section 7.2. For some results concerning

the information theoretic description of the decoherence process, see (Coles

2012).
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Chapter 7

Decoherence-Induced Preferred Structure

”Observing” is local. Of a composite system, only a small fraction of degrees

of freedom is accessible to observation. That is, only a small amount of

information about a composite system is acquired in realistic experimental

situations.

There is no observer outside the Universe. Observer is a part of the struc-

ture he observes. From Section 6.5 we learn: there are certain structures of

the Universe that cannot be observed by an observer belonging to another

structure. More on this in Chapter 8. Here we are interested in structures

of local systems, which are open–i.e. in unavoidable interaction with their

environments. This means, as distinct from Chapter 6, the transformations

of variables leave environmental degrees of freedom intact.

Which degrees of freedom are accessible to an observer (Def.5.1), i.e. what

constitutes ”system” in a given physical situation? Are there some general

rules and/or limitations? What is origin of the classical prejudice, which

is described in Section 2.1? Those are the main questions of interest in

the remainder of this chapter. For a couple of models, we obtain that the

environment selects a ”preferred” structure of the open system.

7.1 Decoherence-based classicality

Decoherence Program (Giulini et al 1996, Schlosshauer 2004) offers a clue

regarding the above posed questions: environment decoheres only a fraction
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of the open system’s degrees of freedom. The decoherence-preferred degrees

of freedom are considered to be accessible (directly measurable in the sense

of Def.5.1) and therefore ”objective” for an observer.

For instance, quantum vacuum monitors atomic R system, not atomic CM

system (Breuer and Petruccione 2002, Rivas and Huelga 2011). Atomic de-

excitation, i.e. the state decay, refers to the atomic R system: detection of

a photon reveals the atomic internal-energy decay, which, typically, does not

affect the atomic CM system. Bearing in mind Section 5.1, it is now clear:

quantum vacuum only partially monitors atomic electron(s) and proton(s)51.

Interaction between the open system S and its environment E:

HSE = AS ⊗ BE (103)

models a measurement of the system’s observable, AS, that is performed by

the environment E. If this interaction dominates the composite system’s

(S +E’s) dynamics, then the eigenstates of AS appear as the preferred (e.g.

the approximate ”pointer basis”) states for the open system S. In general,

spectral form of the interaction Hamiltonian gives only a hint–not necessarily

a definition–of the pointer basis states (Dugić 1996, 1997).

So, the environment-induced decoherence naturally offers the following basis

for answering the above posed questions:

Clue. Decoherence-selected preferred states (and the related preferred observ-

ables) determine the preferred structure of the open system.

For instance, it is easy to design the phenomenologically inspired effective

interaction that promotes the CM system as a preferred subsystem:

HSE = XCM ⊗ BE; S = CM +R. (104)

For Brownian particle, neglecting the particle’s R system, the model eq.(104)

is presented by eq.(66), i.e. BE =
∑

i κixEi.

51For some details see (Jeknić-Dugić et al 2011).
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Similarly, Stipulation 1 of Section 4.2.2 assumes, at least approximate, com-

mutation [HKNE, KN ] = 0, that can be modelled e.g. as52:

HKNE = KN ⊗ BE. (105)

However, eqs. (104)-(105) are constructed, i.e. designed (or stipulated) in

order to fit with phenomenology. However, in order to answer the above

posed questions, it is desirable to have derived (not merely stipulated) the

preferred structure of an open system.

In the next sections we will justify the Clue. We consider specific models

without posing any stipulation. Thereby we come to the conclusion: deco-

herence may provide a unique preferred structure of the open system.

In this context it is natural to reject physical reality for the degrees of freedom

representing linear combinations of the decohered degrees of freedom. E.g.,

cf. Section 2.1 [and Footnote 27], the Earth’s and the Venus’ CM systems

are decohered, but the CM system for the Earth’s and the Venus’ CM -

systems is not–and is therefore an empty point in space, not an object–in

full agreement with the classical intuition described in Section 2.1; for more

details see Section 8.2.

Of course, classicality of certain [decohered] degrees of freedom does not imply

non-observability of the alternative (non-decohered) degrees of freedom. As

it is emphasized in Sections 2.4 and 5.1, ”local action” is a relative concept,

which is usually well defined in a concrete physical situation.

So, we are concerned with the following task:

T . Are there some realistic models that do not require ”construction” or

stipulation of the preferred structure of an open composite system?

In the next sections we give just a few such models referring to the few-

degrees-of-freedom open systems. The models employ different criteria for

classicality–a definition of the open system’s pointer basis (and correlation

52See eq.(3.164) in (Giulini et al 1996).
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in the composite system), and the validity range of certain kind of master

equations, respectively. We are not aware of any other technically elaborated

considerations.

7.2 Asymptotic dynamics of a two-mode system

For a pair of modes, we investigate asymptotic (t → ∞) behavior53 of the

environment-induced preferred states. Following generally accepted decoher-

ence procedures, we find that there is only one structure of the composite

system which allows for the preferred states to be regarded to bear classical-

ity.

We consider a pair of uncoupled modes in the ”phase space” representation

(as a pair of non-interacting linear harmonic oscillators) that are indepen-

dently subjected to the quantum amplitude damping channels. A pair of

noninteracting linear oscillators, 1 and 2, with the respective frequencies and

masses, ω1, ω2. and m1,m2. The ”phase space” position variables, x1 and

x2, and the conjugate momentums, p1 and p2, respectively. The total Hilbert

state space factorizes H = H1⊗H2 and the total Hamiltonian H = H1+H2,

Hi = p2i/2mi +miω
2
i x

2
i/2, i = 1, 2.

We analytically (exactly) solve the Heisenberg equations of motion in the

Kraus representation (Fan and Hu 2009, Jiang et al 2011, Zhou et al 2011,

Ferraro et al 2005, Kraus 1983, Breuer and Petruccione 2002, Rivas and

Huelga 2011) and analyze the obtained results for the original, as well as

for some alternative, degrees of freedom of the open system. The considered

structures are local in the sense that the environmental degrees of freedom

remain intact. We find that the environment non-equally ”sees” the different

structures. It appears, that there is only one structure that is distinguished

by classicality and locality of the environment influence.

53For Markovian bipartite open systems, which is our case, cf. eq.(106), (Ferraro et al
2010) pointed out non-occurrence of discord sudden death, i.e. the smooth disappearance
of non-classical correlations. This is the reason we, in search for classicality, stick to the
asymptotic solutions.
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For an oscillator (mode) subjected to a lossy channel (or cavity at zero tem-

perature), the master equation reads (Jiang et al 2011):

dρ

dt
= −κ

[

2aρa† − {a†a, ρ}
]

(106)

with the bosonic ”annihilation” operator a and the damping parameter κ.

The master equation eq.(106) is known to be representable in the Kraus form

(Ferraro et al 2005, Fan and Hu 2009, Jiang et al 2011, Zhou et al 2011):

ρ(t) =
∞
∑

n=0

Kn(t)ρK
†
n(t) (107)

with the completeness relation
∑∞

n=1K
†
n(t)Kn(t) = I, ∀t. For the amplitude

damping process, i.e. for the master equations eq.(106), Kraus operators

(Ferraro et al 2005, Fan and Hu 2009, Jiang et al 2011, Zhou et al 2011):

Kn(t) =

√

(1− e−2kt)n

n!
e−kNtan, N = a†a. (108)

In the Heisenberg picture, the state ρ does not evolve in time. Then, in the

Kraus representation, dynamics of an oscillator’s observable A reads:

A(t) =
∞
∑

n=0

K†
n(t)A(t = 0)Kn(t) =

∞
∑

n=0

(1− e−2kt)n

n!
a†ne−ktNA(t = 0)e−ktNan.

(109)

The infinite sum in Eq.(109) is often approximated by a few first terms, e.g.

in (Liu et al 2004). However, below we give exact solutions to Eq.(109)

without calling for or imposing any approximation.

7.2.1 Original degrees of freedom

The structure we are interested in

(1 + E1) + (2 + E2) (110)
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can be described by the following form of interaction: V = α
∑2

k=1
(AS1k ⊗

BE1k+AS2k⊗BE2k) (Rivas and Huelga 2011). If the open system’s dynamics

is Markovian [of the Lindblad form], one can totally separate dynamics of

the two subsystems, 1 and 2, for the initial tensor-product54 state ρ12.

For the above interaction V , the master equation for C = 1+2 is of the form

(Rivas et al 2010b, Rivas and Huelga 2011):

dρ12
dt

= −ı
∑

i

[Hi + α2H
(i)
LS, ρ12]

+α2
∑

ω,i,k,l

γ
(i)
kl (ω)

[

A
(i)
k (ω)ρ12A

(i)†
l (ω)− 1

2
{A(i)†

l (ω)A
(i)
k (ω), ρ12}

]

.(111)

By tracing out eq.(111), ρi = trjρ12, i 6= j = 1, 2, with the use of tri[Bj, ρ12] =

0, i = j and tri[Bj, ρ12] = [Bj, ρj] for i 6= j, i, j = 1, 2, one easily obtains the

following master equation:

dρi
dt

= −ı[Hi + α2H
(i)
LS, ρi]

+α2
∑

ω,k,l

γ
(i)
kl (ω)

[

A
(i)
k (ω)ρiA

(i)†
l (ω)− 1

2
{A(i)†

l (ω)A
(i)
k (ω), ρi}

]

(112)

for both, i = 1, 2.

We are interested in the independent, environment-induced amplitude-dam-

ping processes for the two oscillators, 1 and 2. For the ”amplitude damping

channel” for one oscillator, there is only one Lindblad operator, a–the ”anni-

hilation” boson operator. So, eq.(112) now obtains the form of eq.(106) for

both oscillators (modes) with the respective damping parameters κi.

To facilitate our considerations, we switch to the Kraus representation of the

master equation eq.(106). We do that in the Heisenberg picture.

54For correlated state ρ12, the Si system is in initial correlation with the effective envi-
ronment, Sj + E, j 6= i = 1, 2, and thus its dynamics is not Markovian (Rivas and Huelga
2011); see Section 6.2.
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Independent amplitude damping channels for the two modes are presented

by mutually non-correlated, local, Kraus operators, K1
m ⊗ I2 and I1 ⊗K(2)

n ,

i.e. by the separable total operation K
(1)
m ⊗K(2)

n . This operation gives for a

one-mode operator, A1:

∞
∑

m,n=0

K(1)†
m ⊗K(2)†

n A1(t = 0)⊗ I2K(1)
m ⊗K(2)

n =

∞
∑

m=0

K(1)†
m A1(t = 0)K(1)

m ⊗
∞
∑

n=0

K(2)†
n K(2)

n = A1(t)⊗ I2 (113)

Similarly for a A1B1 operator:

∞
∑

m,n=0

K(1)†
m ⊗K(2)†

n A1(t = 0)B1(t = 0)⊗ I2K(1)
m ⊗K(2)

n =

∞
∑

m=0

K(1)†
m A1(t = 0)B1(t = 0)K(1)

m ⊗
∞
∑

n=0

K(2)†
n K(2)

n ≡

(A1B1)(t)⊗ I2. (114)

Above we used the completeness relation for the 2 system’s Kraus operators.

Of course, the completeness relation for the two-mode Kraus operators is

fulfilled:
∑∞

m,n=0K
(1)†
m ⊗K(2)†

n K
(1)
m ⊗K(2)

n = I1 ⊗ I2 ≡ I12. For the two-mode

operators:

∞
∑

m,n=0

K(1)†
m ⊗K(2)†

n A1(t = 0)⊗ A2(t = 0)K(1)
m ⊗K(2)

n =

∞
∑

m=0

K(1)†
m A1(t = 0)K(1)

m ⊗
∞
∑

n=0

K(2)†
n A2(t = 0)K(2)

n ≡

A1(t)⊗ A2(t), (115)

which exhibits independence of the actions of the two environments, E1 and

E2.
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We use the following generalization of the Baker-Hausdorff lemma (Mendaš

and Popović 2010):

e−sABe−sA = B−s{A,B}+ s2

2!
{A, {A,B}}− s

3

3!
{A, {A, {A,B}}}+ ... (116)

where the curly brackets denote anti-commutator, {A,B} = AB +BA. So

e−ktNae−ktN = ektae−2ktN , e−ktNa†e−ktN = e−kta†e−2ktN (117)

Substituting eq.(1117) into eq.(109) one directly obtains:

a†(t) = e−kta†
∞
∑

n=0

(1− e−2kt)n

n!
a†ne−2ktNan = e−kta†. (118)

Similarly:

a(t) = −ekt
∞
∑

n=0

(1− e−2kt)n

(n− 1)!
a†n−1e−2ktNan + ekta. (119)

With the use of
∑∞

n=0
(1−e−2kt)n

(n−1)! a†n−1e−2ktNan = (1− e−2kt)a, we obtain:

a(t) = e−kta. (120)

In the completely analogous way one obtains:

(a2)(t) = e−2kta2

(a†2)(t) = e−2kta†2

(a†a)(t) = e−2kta†a. (121)

Now with the aid of

x =

(

h̄

2mω

)1/2

(a+ a†), p = ı

(

mh̄ω

2

)1/2

(a† − a), (122)
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we obtain the following solutions to the Heisenberg equations for the position

and momentum observables:

x(t) = e−ktx, p(t) = e−ktp

x2(t) = e−2ktx2 +
h̄

2mω
(1− e−2kt)

p2(t) = e−2ktp2 +
mh̄ω

2
(1− e−2kt). (123)

From eq.(123), one directly obtains asymptotic solutions:

lim
t→∞

x(t) = 0 = lim
t→∞

p(t), lim
t→∞

x2(t) =
h̄

2mω
, lim
t→∞

p2(t) =
mh̄ω

2
. (124)

From eq.(124) directly follows product of the standard deviations in the

asymptotic limit for both oscillators:

lim
t→∞

∆x(t)∆p(t) =
h̄

2
. (125)

Physically, eq.(125) is clear: asymptotic states, for both oscillators, are the

minimum uncertainty states. In the position-representation, those states

are the minimum uncertainty Gaussian states–the well-known Sudarshan-

Glauber coherent states.

For the Markovian bipartite open systems (which is our case for the structure

eq.(110) and for both oscillators, 1 and 2) it is well known, that non-classical

correlations smoothly disappear in the asymptotic limit–there is no discord

sudden death (Ferraro et al 2010). On the other hand, for Gaussian states

(Adesso and Datta 2010), the only bipartite-system states that have zero dis-

cord are the tensor product states–no correlations at all. Hence, we directly

conclude about the preferred asymptotic states, (the approximate pointer ba-

sis) for the pair of oscillators, that satisfy eq.(125):

|α〉1|β〉2, (126)
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where |α〉1 and |β〉2 are the Sudarshan-Glauber coherent states, i.e. the

minimum uncertainty Gaussian states for the two oscillators, 1 and 2.

7.2.2 Alternative degrees of freedom

We introduce formally a pair of the degrees of freedom, XA and ξB, with

the conjugate momentums, PA and πB, [XA, PA] = ıh̄ and [ξB, πB] = ıh̄; of

course, [XA, πB] = 0 = [ξB, PA]. Without loss of generality, let us consider

the following linear canonical transformations55:

XA =
∑

i

αixi, PA =
∑

j

γjpj, i, j = 1, 2

ξB =
∑

m

βmxm, πB =
∑

n

δnpn, m, n = 1, 2. (127)

for the pair of oscillators considered in Section 7.2.1.

Then the total system’s Hilbert state space factorizes, H = HA ⊗HB, while

the Hamiltonian obtains the general form H = HA +HB +HAB.

According to the above task, T , we are interested in solutions to the Heisen-

berg equations for the alternative degrees of freedom.

However, we cannot directly use the master equation eq.(106) in order to

derive the Kraus operators for the new subsystems, A and B.

The transformations eq.(127) are local, i.e., they leave the environmental

degrees of freedom intact. On the other hand, as the oscillators are out of

any external (classical) field, bearing in mind experience with the model in

Section 6.3, we directly conclude that there is not any interaction between the

new subsystems, A and B, i.e. that HAB = 0. However, the LCTs eq.(127)

change the character of interaction with the environment. This is easily seen

from the forms of the Kraus operators for the original oscillators, eq.(108).

Placing the inverse to eq.(127) into eq.(108) directly provides the following

conclusion: for the new subsystems, A and B, the environment E = E1 +E2

55With the constraints: αiγi = 1 = βiδi, and αiδi = 0 = βiγi.

93



acts as a common environment, non-locally. This is, one can easily show:

K(1)
m ⊗K(2)

n 6= K(A)
m ⊗K(B)

n . (128)

Physically, it means that non-local action is exerted by the total environment

E on the pair A+B.

This conclusion also [directly] follows from eq.(25) in the context of Entan-

glement Relativity: according to ER, the preferred states eq.(126) typically

obtain entangled form for the new structure, A + B. So, while the environ-

ment E independently acts on the 1 and 2 systems, its action on the A and

B systems is [typically] non-local. Finally, one can deal with eq.(106) by ex-

pressing the old Lindblad operators via the new subsystem’s operators. On

this basis one expects nonseparation of master equations for the new subsys-

tems A and B, i.e. nonvalidity of the master equation eq.(112) for the new

subsystems A and B.

In the structure terms, the model of the total system (as distinct from

eq.(110)) reads:

(A+B) + E. (129)

Fortunately enough, the Kraus operators formalism deals with the infinite

sums, not with the individual Kraus operators. So, we can circumvent all the

technical problems by dealing with the infinite sums of the Kraus operators

for the original structure, eq.(110), while expressing the new variables through

the old ones.

With the use of eqs.(123), (127), we can directly write for the new position

and momentum observables:

XA(t) =
∑

i

αixi(t), PA(t) =
∑

i

γipi(t)

ξB(t) =
∑

i

βixi(t), πB(t) =
∑

i

δipi(t). (130)
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Similarly, e.g.

X2
A(t) =

∑

i,j

αiαj(xixj)(t), P
2
A(t) =

∑

i,j

γiγj(pipj)(t); (131)

of course [cf. eqs.(114), (115)], (ab)(t) ≡∑∞m,n=0K
(1)†
m (t)K

(2)†
n (t) ab K

(1)
m (t)

K
(2)
n (t). Analogous expressions can be directly written for the B system.

For the tensor product initial state ρ12(0) = ρ1(0)ρ2(0), with the aid of

eq.(123), we obtain:

(∆XA(t))
2 = tr12

[

∑

i,j

αiαj(xixj)(t)ρ12(0)

]

−
[

tr12
∑

i

αixi(t)ρ12(0)

]2

=

∑

i

α2
i (∆xi(t))

2 +
∑

i,j 6=i

αiαj [〈(xixj)(t)〉 − 〈xi(t)〉〈xj(t)〉] =
∑

i

α2
i (∆xi(t))

2. (132)

In complete analogy, one can calculate all the other standard deviations fi-

nally to obtain in the asymptotic limit:

∆XA(∞)∆PA(∞) = h̄

√

(

α2
1

2m1ω1
+

α2
2

2m2ω2

)(

γ21m1ω1

2
+
γ22m2ω2

2

)

∆ξB(t)∆πB(t) = h̄

√

(

β2
1

2m1ω1
+

β2
2

2m2ω2

)(

δ21m1ω1

2
+
δ22m2ω2

2

)

. (133)

In general, the rhs of both expressions in eq.(133) are larger than h̄/2.

On the other hand, the common environment (E = E1 +E2) for the subsys-

tems A and B is expected to induce correlations for the A and B systems,

even if the initial state is tensor product. This can be easily justified by the

use of the ”covariance function”, e.g. C(t) = 〈XA(t)ξB(t)〉 − 〈XA(t)〉〈ξB(t)〉.

95



From eqs.(123) and (127) we obtain:

C(∞) = lim
t→∞

∑

i,j

[(xixj)(t)− xi(t)xj(t)] =

∑

i

αiβi (∆xi(∞))2 = α1β1
h̄

2m1ω1
+ α2β2

h̄

2m2ω2
, (134)

which, typically, is non-zero; in eq.(134), likewise for eq.(123), we used nota-

tion (xixj)(t) = xi(t)xj(t), i 6= j, for the tensor product initial state.

Non-zero covariance function reveals presence of correlations56 in the A+ B

structure of the composite system, even in the asymptotic limit.

7.2.3 Preferred structure

For the A representing the center of mass and the B representing the ”relative

particle” for the pair of equal-mass (m1 = m2) and resonant (ω1 = ω2)

oscillators57, i.e. for α1 = 1/2 = α2, β1 = 1 = −β2, γ1 = 1 = γ2 and δ1 =

1/2 = −δ2, one obtains equalities on the rhs of eq.(133), ∆XA(∞)∆PA(∞) =

h̄/2 and ∆ξB(∞)∆πB(∞) = h̄/2, as well as the absence of correlations,

C(∞) = 0.

However, typically, the preferred states for the A + B structure are not the

minimum uncertainty states and are correlated.

The states eq.(126) are arguably the most classical bipartite system states of

all. They are free of any kind of correlations (classical or quantum) and are of

the minimum quantum uncertainty. Hence, [in the asymptotic limit], one can

imagine the pair 1+2 as a pair of ”individual”, mutually distinguishable and

non-correlated systems. In a sense, this is a definition of ”classical systems”

(Giulini et al 1996, Zurek 2003, Schlosshauer 2004). On the other hand,

56However, zero covariance function does not guarantee the absence of correlations. The
correlations can be classical or quantum–to distinguish between them, one should use discord,
Section 3.2.

57These are the common assumptions–that simplify calculation, see e.g. (Paz and
Roncaglia 2008)–that are absent from our considerations.
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none of these is in general valid for the alternate structure A + B: even for

the initial tensor product state for A + B, non-local action of the common

environment induces correlations, even in the asymptotic limit. So, one can

say that the environment composed of two noninteracting parts, which induce

independent (local) amplitude damping processes, makes the 1 + 2 structure

special (”preferred”).

7.3 Atom in electromagnetic field

The composite system C consists of an atom’s internal degrees of freedom (A)

in electromagnetic field (EM); C = A + EM .58 The C system is monitored

by the environment, which is supposed to be photon absorbing and quickly

to thermalize (Stokes et al 2012). A similar analysis can be found in (Stokes

2012).

Structural changes in C are performed by certain unitary operations that

give rise to the different forms of the C’s Hamiltonian, H.

Different forms of the Hamiltonian are expected to give rise to different master

equations for different structures of the open system. The authors introduce

the following criterion of classicality: the preferred structure is the one that

provides predictions in accordance with the presence of the photon-absorbing

environment. Some other characteristics of the environment, i.e. of physical

situation, could lead to different conclusions about the preferred structure of

the open system C.

The following forms of the composite system’s Hamiltonian are of interest.

The original structure, A+EM , is defined by the so-called minimal-coupling

Hamiltonian:

H = H(min) =
1

2mA
[~pA + e ~AEM(~0)]2 + V (~rA) +

58The A represents the atomic internal (R) system for the standard CM + R atomic
structure, Chapter 5. Only the subsystem R is in interaction with the electromagnetic field.
For this reason, the atomic CM system is omitted from considerations–compare to Section
5.3.
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1

2

∫

d3~x

[

1

µ◦
| ~BEM(~x)|2 + 1

ǫ◦
|~ΠEM(~x)|2

]

. (135)

In eq.(135), one can easily recognize the EM self-energy (the last term)

and the minimal coupling of the atom with the electromagnetic field. The

conjugate observables are ~rA, ~pA, for the atom, and ~AEM , ~ΠEm for the EM

field; ~B = ~∇× ~A.

With the use of the specific unitary transformations, the following forms of

the Hamiltonian are obtained:

H = H(mult) =
~p21

2mA
+ V (~r1) +

1

2

∫

d3~x

[

1

µ◦
| ~B2(~x)|2 +

1

ǫ◦
|~Π2(~x)|2

]

[multipolar],

H = H(rw) =
∑

~k,λ

h̄g~kλσ
+
exaF~kλ +H.c.+ h̄ω◦σex3 +

∑

~kλ

h̄ωka
†
F~kλ

aF~kλ, [rotating − wave]. (136)

The transformations behind these forms of the total system’s Hamiltonian

are specific in that they do not change the degrees of freedom: ~r1 = ~rA and
~A2 = ~AEM , hence ~B2 = ~BEM . However, their conjugate momentums change

so as [~pA, ~p1] 6= 0. The rotating wave form of the total system’s Hamiltonian is

obtained after approximating the atomic internal system by the exciton two-

level model (compare to Section 4.1)–hence the Pauli operators σ and the

annihilation and creation operators on the bosonic Fock space in eq.(136).

The ”rotating wave” structure is thus a variant of the famous spin-boson

model.

The structure transformations can be described as:

Smin = {~rA, ~AEM , ~pA, ~ΠEM} → Smult = {~rA, ~AEM , ~p1, ~Π2} → Srw = {~σex, NF}
(137)

NF ≡ a†FaF . Definitions of the momentum observables as well as physical
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interpretation of the structures can be found in the original paper (Stokes et

al 2012). These subtle details are not substantial for our considerations.

By applying the second order perturbation approximation, the authors derive

master equations59 for the different structures. Expectably, these master

equations are both formally and physically different.

As it is emphasized above, the criterion for classicality relies on the experi-

mental evidence with the photon-absorbing environment. Such environment

(that quickly thermalizes after the photon absorption) does not support spon-

taneous emission for the atom in the ground state–there are not photons in

the field that could re-excite the atom. For this specific, yet realistic, phys-

ical situation, the authors were able to show that only the ”rotating wave”

Hamiltonian provides the proper master equation [with notation adapted to

eq.(136)] (see their eq.(67)):

dρex
dt

= −ıω◦[σex3, ρex] +
1

2
A−(2σ

−
exρexσ

+
ex − {σ+exσ−ex, ρex}). (138)

Formally, this is the master equation eq.(80). From eq.(138) is calculated the

stationary state photon emission rate, Iss = 0, which is in accordance with the

experimental evidence. The other master equations, that correspond to other

structures, give physically unreasonably large photon emission [without any

external driving]. Thereby, for the considered physical situation, the preferred

structure is Srw.
The authors emphasize that a change of the criterion for classicality, which

would correspond to another physical situation, would, in general, distinguish

some other structure of the composite system as ”preferred structure”.

7.4 Outlook

Interaction determines correlation of ”system” and its environment (Dugić

1996, 1997); see Supplement for some technical details. The kind and the

59Not yet emphasizing the complications originating from QCR.
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type of correlation determines the preferred structure.

If the total system (”system+environment”) is in entangled state:

|Ψ〉SE =
∑

i

ci|i〉S|i〉E, (139)

both the open system’s and the environment’s state are unique for every

structure. Regarding the model of Section 7.2, eq.(110), in accordance with

the solutions to eqs.(111)-(112), the total system’s state in the asymptotic

limit is tensor product [in simplified form] |φ〉1+E2
|χ〉2+E2

=
∑

α cα|α〉1|ǫ(α)〉E1
∑

β dβ|β〉2|ǫ(β)〉E2
. However, for the structure, S +E = (1 + 2) + (E1 +E2),

the state takes the form of eq.(139):

|Ψ〉SE ≡ |Ψ〉12E =
∑

α,β

Cαβ|α〉1|ǫ(α)〉E1
|β〉2|ǫ(β)〉E2

≡
∑

k

dk|k〉12|k〉E, (140)

where Cαβ ≡ cαdβ and k ≡ (α, β), for both S and E.

However, for the alternate A+B structure, eq.(140) acquires the form:

|Ψ〉SE ≡ |Ψ〉ABE =
∑

k

dk|k〉AB|k〉E, (141)

where, of course, the preferred states for the total system S60, |k〉S = |k〉12 =
|k〉AB, ∀k, but, in general, |k〉AB is not of the tensor-product form relative to

the A + B structure. The environment E acts as a whole, simultaneously

on both subsystems A and B–the subsystems A and B have common envi-

ronment E. From Section 3.1 we know that, for at least some states |k〉12 in
eq.(140), |k〉12 =

∑

m ckm|m〉A|m〉B. So collecting eq.(140) and eq.(141) we

60The nonorthogonal Gaussian states constitute an approximate pointer basis–compare
to eq.(148).
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can write (1 + 2 = S = A+B):

∑

k

dk|k〉12|k〉E =
∑

k

dk

(

∑

m

ckm|m〉A|m〉B
)

|k〉E, (142)

which clearly exhibits the preferred states, |k〉S, and the preferred structure,

1 + 2, of the open system S–|k〉S = |k〉12 = |α〉1|β〉2, eq.(126)–which justifies

the Clue from Section 7.1.

The model considered in Section 7.3 does not offer such a clear picture on

the choice of the preferred structure. For this to be provided, solutions to all

master equations referring to the different structures are needed. Needless to

say, this is a complicated task. Nevertheless, bearing in mind eq.(142), one

can expect analogous conclusions.

So we find the results of Sections 7.2 and 7.3 mutually qualitatively consistent

and also consistent with the told in Section 7.1. This consistency encourages

us to state

Conjecture 2. The environment (i.e. its interaction with the open system)

is responsible for existence of the ”preferred” structure of the open system.

In this context, it becomes clear: there is not any reason to claim or suppose

existence of ”preferred structure” (or of the preferred states and/or observ-

ables) for a closed physical system (i.e. for the Universe)–cf. Chapter 6 and

Chapter 8 for details.

The above conjecture is in intimate relation with the recent suggestion in

(Harshman 2012a): ”the physically-meaningful observable subalgebras are the

ones that minimize entanglement in typical states.” Rigorously speaking, this

is another criterion of classicality, which is not considered in this book: min-

imum correlations in open system61. This condition is already fulfilled for

the model considered in Section 7.2: the state eq.(126) is without any corre-

lations relative to the preferred structure 1+2. Similarly, regarding the more

61The opposite, i.e. the requirement for the maximum correlations, is essential for quan-
tum information processing. To this end see (Fel’dman and Zenchuk, 2012).
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general considerations of the Markov open systems (Arsenijević et al 2012),

the minimum correlations as a criterion of classicality distinguishes the model

eq.(110).

In summary, we can conclude: typically, the environment [i.e. its interac-

tion with the open system’s degrees of freedom–compare e.g. eq.(110) with

eq.(129)] distinguishes preferred structure of the open composite system. We

conjecture that this is a universal rule of the open systems theory. Regarding

the closed systems, of course, this is not the case, as we elaborate in the next

chapter.

102



Chapter 8

Some Interpretation-Related Issues

Classical ”phase space” of a physical system is unique. All degrees of freedom

(and their conjugate momenta) of the system, that are mutually related by

linear transformations, belong to the same phase space. This analogously

applies to the quantum mechanical counterpart. As we have emphasized

in Section 2.3, state space of a quantum system is unique Hilbert space.

Quantum state of a system is unique in every instant of time.

8.1 Global irreducible structures with decoherence

Let us consider the Universe as a closed quantum system. By definition, there

is nothing outside the Universe, including ”observer”. To this end, there is

no room for any operational definition of the Universe preferred structure.

Without any additional condition/criterion, all structures of the Universe

are equally physically valid. Every structure, denoted σi, is defined by a set

of observables, whose locality is adapted to the tensor factorization of the

Hilbert state space. All the structures share the same physical space and

time, and their dynamics are uniquely determined–there is unique (pure)

quantum state of the Universe in every instant in time.

Every structure σi is composed of some ”elementary particles” and by structu-

re-specific fundamental interactions (i.e. symmetries) between them. Every

instantaneous universal state can be expressed (cf. Section 3.1) in a unique
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way for every structure separately.

In every σi structure, additional LCTs are allowed locally to re-define the

structure62. If a local transformation is indexed by α, then σiα represents the

αth local variation of the σi structure. This subtle topic will be considered

in Section 8.2.

Of all possible structures, σi, we are interested in the structures, S ′n, that
are, including our structure (denoted S◦), mutually global and irreducible;

{S ′n} ⊂ {σi}. For such structures, the respective sets of ”elementary parti-

cles” are mutually irreducible. Dynamics of such structures, although unique

on the level of the Universe, are mutually independent, autonomous. Physical

interactions, as well as the related symmetry conditions, may be totally differ-

ent (Anderson 1993, 1994, Harshman 2012b, Manzano et al 2013). Of course,

provided the full details for one structure are known, one can mathematically

describe all other structures, in full detail. Such structures are (Section 2.2)

mutually information-theoretically independent, separated. Symmetry fixed

for one structure uniquely determines (induces) the symmetry rules for every

other structure.

One can still ask if a local measurement in one structure can represent a

measurement of certain variables characteristic for an alternative structure.

This subtle question regards both local structures, which will be considered in

Section 8.2, as well as the issue of the ”quantum reference frame”, which will

be discussed in Section 8.3.2. One should still keep in mind: ”observation”

[cf. Chapter 7] is local. So, an observer can directly ”see” only the systems,

which belong to the structure he lives in. Acquiring information about the

subsystems of the alternate structures is inevitably indirect and limited, i.e.

partial, Lemma 2.1.

Having in mind equal physical status of the considered structures S ′n, it is

apparent: observer cannot operationally conclude which structure he is a part

62E.g., in our structure, instead of e+p, the hydrogen atom can be described as CM+R–
see Chapter 5.
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of. Due to invertibility of the LCTs, our structure is alternative relative to

the other structures. Which structure is then primary63?

We place a special emphasis on the Si structures which are subject to decohe-

rence-induced classicality (for an example see Section 6.3). This additionally

shrinks the set of the structures of interest for us: {Si} ⊂ {S ′n}. So we are

interested in the structures that are, relative to each other as well as to our

structure, global and irreducible, and of all of them, we are interested only in

the structures that support decoherence for certain local degrees of freedom.

8.2 Local structures and classicality

In Section 8.1 we distinguished the set of mutually global and irreducible

structures, {Si}, which carry decoherence for some of their respective degrees

of freedom. Let us denote by S◦ the one we belong to, and the other by

Sj, j = 1, 2, ....

Every such structure is defined by a set of the fundamental degrees of freedom,

which can be subject to local transformations of variables. An illustration is

given by Example 2 in Section 2.2. Here we use notation of Section 2.2 to

emphasize local transformations:

S1 = {1e, 2e, 1p, 2p} → S2 = {1H, 2e, 2p} → S4 = {1CM, 1R, 2CM, 2R},
(143)

for every pair of ”neighbor” structures. Analogous transformations can be

performed for every structure Sj.
Grouping the particles and imposing certain boundary conditions can lead

to formation of a local alternative structure S ′◦ for our structure. Physically,
the new subsystems can be some composite particles, like mesons, atoms,

molecules, compounds, large bodies and so on. This local re-structuring can

be performed for every structure Sj.

63Our structure may look like the CM + R structure for some alternate structure of the
Universe.
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Howmany local structures, Siα, of the Si structure (here: i = 0, 1, 2, 3, ...), can

carry decoherence? According to Sections 7.2 and 7.3, there is only one such

a local structure for every Si. However, this is only a plausible conjecture–

cf. Conjecture 2 in Section 7.3. Justifying/unjustifying this conjecture, i.e.

defining local ”systems” for a structure Si, is an open issue yet (Arsenijević

et al 2012, Harshman 2012a, Zanardi 2001)64.

This subtlety of ”what is ’system’?” (Dugić and Jeknić 2006, Dugić and

Jeknić-Dugić 2008) clearly exhibits limitations of the pure theoretical con-

siderations. Rather, some phenomenological facts are needed. It is not sur-

prising, as quantum mechanics offers much more than our experience can

support65.

As emphasized in Section 7.1: local structural variations are meaningless for

the already decohered structure. Decohered degrees of freedom (subsystems

of a composite system) are quasi-classical. For the quasi-classical degrees of

freedom, the transformations of variables become nonphysical, a mathemat-

ical artifact. As it is emphasized throughout this book (cf. e.g. Chapter 5):

the center-of-mass positions of the macroscopic bodies are quasi-classical and

hence regarded as (locally) physically realistic. Due to the very meaning of

”realistic”66, linear combinations of the centers of mass of the macroscopic

bodies cannot be realistic. This way, we justify the classical prejudice dis-

tinguished in Section 2.1: our structure [phenomenologically] supports deco-

herence, and decohered degrees of freedom have classical reality. Of course,

this reality is local, i.e. of relevance and interest only for our structure, which

we are a part of–what’s realistic in one structure does not determine what is

realistic in any other structure.

Local structures, including the ”classical” ones provided by decoherence, are

64e.g. The atoms presented by the structure S3 = {1H, 2H}, where ”H” denotes a
hydrogen atom, which, as a subsystem of the Universe, can be differently decomposed. See
also the molecule structures S1 and S5 in Section 4.1.

65Recall the efforts to introduce the one-particle models, in order to avoid quantum en-
tanglement, for the composite systems in nuclear physics and condensed matter physics.

66”Realistic” serves primarily to define what is ”not realistic”.
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reducible. Observing classical structures gives rise to the classical prejudice

(Section 2.1) and directly results in classical intuition on finite decomposabil-

ity of the physical matter. Apotheosis of this position brings about the naive

reasoning as described in Section 2.1–classical reasoning precludes the idea

of the alternative quantum structures Sj.
Composition of our decoherence-defined structure of the Universe is a conse-

quence of a dynamical change of local structures: the systems are constantly

exchanging particles, some systems are in formation while some other are

splitting (or decaying). This dynamical particles-exchange is an instance of

the trivial LCTs (Section 2.2.1). It provides dynamical local changes in our

structure and stresses the fact, that the time-independent models, typical

for the decoherence theory (cf. Chapters 6 and 7), as well as for the stan-

dard open systems theory (Breuer and Petruccion 2002, Rivas and Huelga

2011), are somewhat artificial. In such dynamical system, some effective and

approximate structures are expected, and the physical description can be

complicated. Furthermore, there may appear some ”emergent” properties

of the macroscopic bodies that are poorly understood in physical sciences,

but vastly referred to, in biology, economy, social sciences, psychology etc.

(Auyang 1998).

It is worth repeating: everything told for our structure S◦ and local obser-

vations can be in principle applied to every other structure Si. While we do

not claim existence of ”observer” in any of the alternate structures, we use

this standard vocabulary to highlight physical equivalence of the Universe

structures we are interested in.

8.3 A unifying physical picture

The group-theoretic character of the LCTs can formally link the structures,

which are endowed by decoherence. However, this mathematical possibility

is physically irrelevant. Actually, according to Section 8.2: performing LCTs

on the local (decoherence endowed) structures is physically pointless. So one

can say:
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The group-theoretic character of LCTs does not imply physical reducibility of

all structures onto one and only one structure of the Universe.

Nevertheless, there is a subtlety, which might not be obvious. In Section

8.3.1 we connect the microscopic and macroscopic domains for our structure

of the Universe. In Section 8.3.2, we discuss the recently elevated issue of

”quantum reference frames”.

8.3.1 Microscopic vs macroscopic domain

The microscopic physical domain is phenomenologically described in Chapter

5. In theoretical analysis, all kinds of LCTs are in principle allowed–that

constitutes the core of the ”what is ’system’?” issue (Dugić and Jeknić 2006,

Dugić and Jeknić-Dugić 2008).

The ”macroscopic domain” is the classical physics domain. Its quantum me-

chanical origin seems naturally to appear within the universally valid quan-

tum mechanics (Giulini et al 1996, Zurek 2003, Schlosshauer 2004). For the

Universe as a whole there may be different structures, whose local variations

can be endowed by decoherence for certain (local) degrees of freedom. We

can think of these structures in analogy with our own, which, in turn, is a

dynamical system with the local particles exchange, i.e. with weakly defined

border-line between the systems, and between the systems and their environ-

ments. Of course, classicality of the alternative structures is a matter of the

”parallel occurrence of decoherence”, which is as yet rigorously established

only for the quantum Brownian motion model, Section 6.3.

In our structure, which is paradigmatic for our considerations, there is con-

tinuous exchange of particles between the systems. The Universe split into

subsystems is subtle and, as yet, not well known a topic. This may be a sign

for a need for a new methodology, which could encompass all the subtleties

regarding the many-particle systems structures.

In the absence of such methodology, below we collect the findings from the

previous Chapters as kind of ”algorithm” for defining the possible structures
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of the Universe:

(a) For our structure, we phenomenologically learn about the set of elemen-

tary particles and their local compositions such as the atoms, molecules etc.

Its dynamics allows local structural variations on the both micro- and macro-

scopic level (domain). Regarding the macroscopic domain, we recognize deco-

herence as the fundamental and also universal quantum mechanical process.

This process provides the (quasi)classical dynamics of certain degrees of free-

dom and defines what’s ”local” and ”realistic” in a given instant in time. This

bases our classical intuition, and, as yet, the dominant view of the quantum

Universe.

(b) Perform the LCTs of the fundamental (microscopic) degrees of freedom of

our structure. Of all thus obtained structures, consider those that are global

and irreducible relative to each other as well as to our structure. Of all

such structures, choose only those supporting decoherence for some of their

local degrees of freedom67. Everything told in the (a) above, should be analo-

gously expressed for such alternate structures of the Universe. The structures

of the kind are mutually information-theoretically separated, and, due to de-

coherence in all of them, application of the LCTs on their (quasi)classical

structures loses its physical meaning and relevance.

(c) An observer belongs to one and only one such structure. The only degrees

of freedom he is able directly to observe are the parts of the structure he be-

longs to. While existence of intelligent observer is not required for all the

structures (Dugić et al 2002), we use this terminology to highlight physically

equal status of all the structures as well as to emphasize the possibility to

choose the classical reference frame in every of them. Some subtleties regard-

ing the recently raised issue of quantum reference frames will be considered

in the next section.

67In principle, existence of such structures is provided in Section 6.3.
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8.3.2 The quantum reference frame issue

Quantum decoherence provides quasiclassical behavior of certain open-sys-

tem’s degrees of freedom. ”Observer” is usually assumed to be a classical

system that can collect (classical) information about the open system.

However, ”observation” assumes existence of ”reference frame” where ”ob-

server” is spatially placed. Hence the familiar classical reference frames. To

this end, it is important to stress: if xS is a system’s position observable, its

measurement from the O reference frame is defined by the xS −XO variable,

where XO is the reference-frame position, which is a classical variable–a c-

number. In order to highlight this definition, we introduce the standard ”hat”

mark for the quantum mechanical observables: x̂S −XOÎ, where the Î is the

identity operator. So it is clear: the variable x̂S − XOÎ is not obtained via

canonical transformation. If there are more than one reference frame, then

x̂S−XiÎ denotes the system’s position seen from the ith (classical) reference

frame. Transitions from a classical reference frame to another one are the

standard symmetry transformations–e.g. the spatial translation–that do not

change structure of the observed system.

However, the quantum reference frames refer to the microscopic (quantum)

systems, which are not subjected to decoherence. This raises non-trivial

questions, e.g., as to how the electron in the hydrogen atom can see the

atomic proton, and vice versa (for a similar considerations see, e.g., (Angelo

et al 2011)). Then, by definition, the proton’s position measured by the

electron is defined as ~̂rp − ~̂re. Notice that the reference-system’s position

is not a classical c-number but a dynamical quantum observable, ~̂re. For

a many-particle system, if the particle 1 is the reference system, then the

position observables of all the other particles are defined in the 1 reference

system:

~̂ρ
1

i = ~̂ri − ~̂r1. (144)

As distinct from the classical reference frames, the quantum reference frames
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(QRF) raise a number of interesting observations and open questions. Below,

we consider one out of plenty of structures Si introduced in Section 8.1–e.g.

our structure S◦. We consider exclusively the QRFs belonging to the same

Universe structure S◦68 of the Universe.

First, it is obvious that the QRF-defined variables, eq.(144), are obtained via

the global LCTs, which introduce a specific kind of the ”relative positions”

observables for the considered structure.

Second, the different QRFs perceive the different structures of the R system.

To see this, we emphasize that, in principle, the structure’s CM system

cannot be observed from a local QRF (Angelo et al 2011)69. So there remains

the ”relative positions”–i.e. the R system is the only one that (of course,

locally) can be observed.

For a quantum observer in the 1 QRF system, the R’s subsystems are de-

scribed by the relative positions eq.(144). As a consequence, every distance-

dependent interaction70 V (|~ri− ~r1|) is an external (”classical”) field, V (|~ρ1i |),
for the ith particle. The interactions V (|~ri−~rj|), i, j 6= 1 remain interactions.

However, for an observer in the 2 QRF system, the physical picture is differ-

ent. Then V (|~ri−~r2|) become the external fields, while the V (|~ri−~rj|), i, j 6= 2

remain interactions in the total system Hamiltonian.

Of course, different interactions produce different correlations between the

constituents of the structure’s R system. In effect, two quantum observers

perceive two different structures of the R system. These structures are global

to each other, but are local to the S◦ structure, which consists also of the

CM system. So, according to the quantum correlations relativity, Section

3.2, we conclude about the different correlations at the quantum observers

disposals.

Now, quantum correlations relativity points out the following striking obser-

68Everything equally applies to the case that there existed a preferred structure of the
Universe.

69See also Chapter 6.
70We drop the ”hat”-mark for the observables.
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vation: as ”quantum observer” can perceive only the R system, the correla-

tions in the R system he can perceive need not be present in the considered

structure S◦, eq.(145) below.

Finally, the requirement that ”all [QRF] perspectives must agree on the prob-

ability of detector clicks” (Angelo et al 2011) does not seem to resolve the

following, now naturally appearing foundational question.

Assume that the structure S◦ is defined by the set {xm, pm} of the fundamen-

tal degrees of freedom. The fact that no QRF can see the structure’s CM

system, but only the ”relative positions”, which are different for the different

reference systems, raises the following question:

is there a fundamental lack of information about the Universe structure for

QRFs?

Having in mind Entanglement Relativity, i.e. the possible entanglement be-

tween the structure’s CM and the QRF-defined ”internal” degrees of freedom,

we re-phrase the above question:

may it be the case, that the [inevitably local] QRFs cannot provide the funda-

mental description of any of the Universe structures?

Formally, introduction of the QRFs gives rise to the following structure trans-

formation:

S◦ = {xm, pm,m = 1, 2, ..., N} → S(i)
◦ = {CM◦, R

(i)
◦ } (145)

for the ith QRF. Regarding the universal state for the considered structure

of the Universe, entanglement may be expected for the S(i)
◦ structure:

∑

p

cpi|p〉CM |p〉R(i), ∀i. (146)

Then for the ith ”quantum observer”, quantum state of the degrees of freedom
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in his disposal is mixed:

ρR(i) =
∑

p

|cpi|2|p〉R(i)〈p|. (147)

That is,

Even the universal validity of the Schrödinger law may be at stake for a

quantum observer.

Leaving these questions out of further consideration, we stick to the standard

understanding of the classical reference frames and of ”classical observer” as

presented above and used throughout this book.

8.3.3 The unifying picture

Bearing in mind that all basic concepts–of the composite system’s degrees

of freedom, locality, correlations, classical reality–are relative, i.e. structure

dependent, we face the following physical picture of the Universe:

The Universe hosts a number of dynamical structures. All these structures are

equally described by quantum mechanical formalism. While the local71 laws

and symmetries may be different, physical reality of the structures cannot be

a priori rejected. Of all structures, we consider only those that are global

and irreducible relative to each other as well as to our structure, and that

support decoherence for some of their local degrees of freedom. An observer,

in principle, cannot say which structure he belongs to. An observer is a part

of one and only one structure and cannot directly observe subsystems of the

alternative structures of the Universe.

8.4 Some interpretational issues

Prima facie, Section 8.3.3 may seem to re-phrase the Ithaca interpretation

of quantum mechanics (Mermin 1998). However, as distinct from the Ithaca

interpretation, we consider a limited set, {Si} (Section 8.1), of the Universe

71The only ”global” physical law valid for all structures is the Schrödinger law.
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structures. In other words, we go beyond the Ithaca interpretation: not arbi-

trary structures of the Universe are relevant for our study. Only the structures

that are mutually nontrivial, global and irreducible, and endowed by deco-

herence, are of interest. Thus Lemma 2.1 makes our conclusions irreducible

to the Ithaca interpretation–our conclusions are basically in agreement with

phenomenology.

Bohmian theory (Durr et al 2012) contradicts our considerations. In Bohmian

theory existence of the fundamental, ontological structure of the Universe

is postulated. The transformations of variables are mathematical artifacts.

This contradiction tackles the issue of completeness of the standard quantum

theory. For our position see Section 8.6.

As the Complementarity principle [but properly understood, cf. (Dugić

2012)] remains intact by our considerations, we believe that the standard

Copenhagen interpretation, as well as the collapse-based interpretations, are

in no conflict with quantum correlations relativity.

However, this does not apply to the Everett Many Worlds Interpretation

(MWI) as we are going to reproduce from (Jeknić-Dugić et al 2011).

8.4.1 Non-branching of the Everett worlds

It is a universal requirement in the context of interpretation of quantum

mechanics: every physically reasonable, even gedanken, situation must be

consistent with the interpretation foundations. This, however, is not the case

with the Everett MWI in the context of the quantum Brownian motion model,

Section 6.3.

To see this, we first show, that ”branching” of one structure excludes the

alternative-structure ”branching”. Consider a decoherence-induced ”history”

for the S + E structure of the QBM setup for the different instants of time,

t◦ < t1 < t2, as required by Everett interpretation:

|xS(t◦), pS(t◦)〉S|ǫ(xS(t◦), pS(t◦))〉E → |xS(t1), pS(t1)〉S|ǫ(xS(t1), pS(t1)〉E
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→ |xS(t2), pS(t2)〉S|ǫ(xS(t2), pS(t2))〉E. (148)

In eq.(148), we introduce the tensor-product states for the subsystems S and

E as a consequence of the decoherence-induced ”branching”72. The ”history”

eq.(148) describes dynamics of one, out of plenty, of Everett worlds. The

states of the S system are Gaussian states [not necessarily of the minimal

uncertainty]73. These states represent the approximate pointer basis, i.e.

the preferred set of (non-orthogonal) states for the open system S. The

environment states, that appear in eq.(148), bring information about the

open system’s states.

According to Section 6.3, there exists another structure, S ′ + E ′, for which

the open system S ′ undergoes quantum Brownian motion. That is, both open

systems (S and S ′) are quantum Brownian particles.

Now, due to Entanglement Relativity, Section 3.1, it becomes clear and un-

avoidable: at least some of the instantaneous states in eq.(148) will be en-

dowed by entanglement–i.e. are non-branched–for the S ′ + E ′ structure. So,

Everett branching for the S+E structure excludes Everett branching for the

S ′ + E ′ structure. More precisely: for a time interval for which the S + E

structure is branched, the S ′ + E ′ structure cannot be branched. Due to

the assumption that branching is fast, i.e. of the order of the decoherence

time (Schlosshauer 2004, Saunders et al 2010), non-branching for the S ′+E ′

structure refers to the most of the composite system’s dynamics.

Physical equivalence of the two structures (see Section 8.2) directly provides

the following observation: Everett branching for the S+E structure excludes

Everett branching for the S ′ + E ′ structure, and vice versa. As the only

consistent statement now appears:

World branching is not allowed for the QBM structures S + E and S ′ + E ′.

72This is essential for the Everett MWI in order to be able [at least approximately] to
mimic the ”state collapse”.

73See, e.g. Wallace, chapter 1 in (Saunders et al 2010).
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So we conclude (Jeknić-Dugić et al 2012)74:

There is at least one physically relevant model of a composite system in de-

coherence theory which cannot be described by the Everett interpretation.

8.4.2 Emergent structures and decoherence

Decoherence is typically studied starting from a fairly unprincipled choice

of system-environment split. In this sense, decoherence is by its nature an

approximate process and so the process of branching is likewise approximate.

In other words (Wallace, chapter 1 in (Saunders et al 2010)) [our emphasis]:

”...decoherence is an emergent process occurring within an already stated mi-

crophysics: unitary quantum mechanics. It is not a mechanism to define a

part of that microphysics”.

Within this new wisdom, one may suppose that there should be an emergent

structure for the QBM model of Section 6.3, i.e. that world-branching refers

to some ”emergent” Brownian particle, B, not directly to the ”microscopic”,

S and S ′, Brownian particles. In the absence of a general physical definition

of ”emergent properties” (i.e. of the ”higher level ontology”) of complex

systems (Auyang 1998), we are forced to speculate about the possible ways

to obtain a branching-eligible structure for the QBM model. To this end, we

are able to detect only two possibilities. We find both of them inappropriate

for defining an emergent QBM structure.

We distinguish the following bases for emergentism. First, it is dynamical

exchange of particles between the ”system” and the ”environment”, which

encompasses the standard choice of the ”dividing line” in the von Neumann

sense (the von Neumann ”chain”, (von Neumann 1955)). Second, one may

suppose, that there is an alternate, third structure providing an emergent

Brownian particle, B, for the pair of Brownian particles, S and S ′. To see that

74Note that neither ER nor POD separately are sufficient for the conclusion. Even
ER+POD is not sufficient. The point is that ER+POD, when applied to a pair of mu-
tually global and irreducible structures (S + E and S ′ + E ′), makes the case: the Everett
interpretation is not applicable to the QBM model.
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the first doesn’t work for the QBM model is straightforward. Actually, both

Brownian particles are one-dimensional and there is not, by definition, any

possibility of exchanging particles of the S system with the environment E

(or of the S ′ system with the environment E ′); of course, due to irreducibility

of the two structures, exchange of the particles between the S system with

the environment E ′ (i.e. of the S ′ system with E) is not even defined. The

variant that an environmental oscillator takes the role of Brownian particle

is also not allowed. For both structures, the environmental particles do not

mutually interact and therefore there is not a properly defined environment

for the variant–not even to mention that this a priori excludes the possibility

(Section 6.3) that the S system is a ”free particle” (not an oscillator).

The second option is a bit more subtle yet. To this end we justify the state-

ments of Sections 2.2.2 and 6.5: (1) obtaining information about one Brow-

nian particle (e.g. S) provides no information about the other one (e.g. the

particle S ′); (2) there does not exist any observable, XB (of the subsystem B

of the composite system C), which could approximate a pair of observables

of the two Brownian particles, S and S ′. In effect, there does not exist any

structure B+EB that could be emergent for the structures S+E and S ′+E ′.

Regarding the point (1), we first remind (cf. Section 3.1): the S ′ system is the

original-structure’s (S+E’s) center-of-mass. So the position-observable of the

S ′ system is subject to Lemma 2.1. Thereby one can say: Brownian particles,

S and S ′, cannot approximate each other, neither there is any information

flow between them.

The arguments for the point (1) apply to the point (2). As the only probabil-

ity density that can provide probability density for arbitrary subsystem is the

universal state, |Ψ〉, there is not any subsystem’s (B’s) probability density,

ρ(XB, X
′
B), that could provide probability density for both the S and the S ′

systems. e.g. The definition XB = f(xS, xS′) gives rise to the probability

density ρ(XB, X
′
B) = ρ(xS, x

′
S, XS′, X

′
S′), which, as emphasized in the proof

of Lemma 2.1, cannot provide the probability densities ρ(xS, x
′
S) or ρ(xS′, x

′
S′)
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by integrating over XS′ and xS, respectively. So, there is not any observable

of the B system whose measurement might approximate simultaneous mea-

surement of any pair of observables for the two Brownian particles, S and

S ′. Physically, this means that we cannot imagine a third system B, which

undergoes Brownian-motion-like dynamics and can approximately describe

both ”microscopic” Brownian particles, S and S ′. As we cannot recognize

any other basis for emergentism, we are forced to conclude that the above-

distinguished inconsistency between the QBM model and the modern Everett

interpretation remains intact.

Finally, we emphasize: the standard QBM model, Section 6.3, is a (paradig-

matic theoretical) decoherence model pertaining to the realistic macroscopic

situation of ”Brownian motion”. There are not any structural phenomenolog-

ical facts about Brownian motion known to us that go beyond the standard

QBM model–there is no need for any ”emergent” Brownian particle.

Bearing this in mind, the possibility that the structures considered in Sec-

tion 6.3 are not susceptible to the Everett interpretation directly raises the

following foundational question: Whether or not decoherence is sufficient for

the Everett branching? If it is, then the told above is unavoidable. If not,

then some additional requirement for branching, i.e. for completeness of the

Everett interpretation, is needed. e.g. One may require some amount of

”complexity” of the composite system to be subject to the modern Everett

interpretation (Saunders et al 2010). Certainly, then the range of applicability

of the modern Everett interpretation shrinks, as distinct from the competitive

interpretations. As the ”additional requirement” is not a part of the present

state of the art in the field, we will not elaborate on this any further, and we

finally return to the conclusion of Section 8.4.1.

8.5 There are no ”particles”

Physical picture presented in Section 8.1 strongly suggests:

There are no ”particles”.
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”Particles” pertains to some special states of the Universe. The kind and

behavior of the elementary particles is structure dependent, and is otherwise

determined by the Universe global symmetry as well as by the local laws

(interactions) that are characteristic for the structure. Decoherence indepen-

dently occurs in the different structures, and the contents of physical reality

is relative, i.e. structure dependent.

Section 8.2, and the parallel occurrence of decoherence, Section 6.3, natu-

rally support the position, that ”there are no particles” even for the local

structures, i.e. on the lower-ontological level (Zeh 1993, Primas 1994).

This position naturally describes certain experiments without raising any

further puzzles. Some points presented below are already raised in Chapter

5.

8.5.1 Delayed choice experiments

In order to exhibit weirdness of the quantum world, Wheeler (Wheeler 1978)

emphasized, that classical reasoning can lead to inconsistency with quan-

tum mechanical conclusions. A recent elaboration due to Peres (Peres 2000)

abandons the classical prejudice on individuality of ”quantum particles”. In-

stead, Peres distinguishes operational reality of quantum entanglement and

implicitly points out entanglement relativity.

In this picture, that is experimentally tested (Ma et al 2012), entanglement

relativity, Section 3.1, naturally appears. Everything can be expressed in

terms of correlations for different partitions of the composite system (entan-

glement swapping), without even mentioning the constituent ”particles” (i.e.

the qubits).75

Of course, the use of the concept of particles may be physically correct.

Our point is, that it is neither necessary nor the simplest description of the

entanglement-swapping-based delayed-choice experiment.

75In a sense, physical picture is easily described in terms of ”correlations without corre-
lata” (Mermin 1998).
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8.5.2 Interaction-free quantum measurements

Recently, based on the ”interaction-free measurement”, see e.g. (Elitzur and

Vaidman 1993), a theoretical proposal for ”direct counterfactual quantum

communication”–that claims that there may be communication without any

particles exchange between the parties–has been formulated (Salih et al 2013).

While quantum communication without the particle exchange is interesting,

this does not provide any spectacular result in ”quantum mechanics with-

out particles”. Rather, as we briefly point out below, it provides another

argument ”against particles”.

All the phrases and spectacular statements simply disappear if we abandon

the classical prejudice, which underlies the phrase ”interaction-free” in the

original theoretical proposal (Elitzur and Vaidman 1993). In the interference

situations, there is not ”particle trajectory”. Finding a particle in an arm of

the interferometer (provided by the click of a detector) does not necessarily

mean that the particle was there before detection.

The following picture removes the puzzles and the spectacular statements:

Every detector is in interaction with the system of interest (a photon). This

gives rise to entanglement of all the detectors with the system, without as-

sumption on the definite spatial position of the system–before, during, or after

the measurement–even if the system’s position is measured. By applying e.g.

the von Neumann’s projection postulate (von Neumann 1955), one easily ob-

tains the standard final state for every detector and for the system after the

measurement. A detector’s click is a local effect that neither precludes nor

implies existence of a ”particle” in any arm of the interferometer before [or

even after] detection. The puzzling click of one and only one detector is a par-

ticular instance of the long-standing problem of quantum measurement–the

apparent state collapse–but not more or less than this.
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8.5.3 Relativistic quantum processes

Although it is not subject of our considerations, certain relativistic quantum

effects provide striking confirmations of relativity of structure as well as of

the ”there are no particles” position.

Quantum-particles annihilation/creation is really striking. e.g. A pair ”elec-

tron + positron” transforms into ”pair of photons”. In such process, one

cannot, even in principle, say that the pair ”electron + positron” can be de-

composed or imagined to consist of a pair of photons, and vice versa. The

place of quantum vacuum, which is responsible for the effect, is yet to be

properly described in the canonical formalism of Chapter 2, (Stokes 2012).

8.6 The universally valid and complete quantum theory

The phrase ”there are no ’particles’ ”, Section 8.5, naturally fits with the

hypothesis of the universally valid and complete quantum mechanics. In this

section we adopt this hypothesis and extend the picture obtained in Section

8.3.3.

8.6.1 Why universally valid and complete quantum theory?

Throughout this book, we respect the hypothesis of the universally valid

quantum mechanics by employing universal validity of the Schrödinger law for

the closed, isolated, quantum systems. Of course, our findings are susceptible

to different interpretations. Then, one can ask the question from the title:

which arguments may justify the choice of universally valid and complete

quantum mechanics?

The arguments are as follows.

First of all, our approach is minimalistic: we do not introduce or add any

additional assumption or hypothesis. In this context, it is easiest to get

rid of the problematic concepts of ”particles”, ”individuality” and ”classical

intuition” and to try to derive them as the approximate and relative concepts,
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whose contents are different for the different decompositions (the structures)

of the Universe.

Second, modern open systems theory (Breuer and Petruccione 2002, Rivas

and Huelga 2011) provides, that practically every physically reasonable dy-

namics of a system can be described by the unitary (Schrödinger) dynamics

on the extended system ”system+environment”. The inverse, however, as yet,

is not the case–unitary dynamics is not derived from the open system’s dy-

namics. Therefore, the unitary quantum mechanics is methodologically more

primary than the open system’s theory. Furthermore, the unitary quantum

theory encompasses the collapse models (Markovian76, or non-Markovian),

and still can describe the models not presenting the state collapse. The in-

verse, however, is not the case. Therefore we choose the universally valid

quantum mechanics.

Third, modern quantum information theory provides the following conjec-

ture: quantum state saturates the information contents of a quantum system

(Brukner and Zeilinger 1999, Pusey et al 2012). That is, it is conjectured that

every possible information about a system can be drawn from the quantum

state–there is no room for ”hidden variables” of any kind, including those of

the modern Bohm’s theory (Durr et al 2012)77. Therefore we choose complete

quantum theory.

So, modern open systems and information theories strongly support the hy-

pothesis of the universally valid and complete quantum mechanics. Neverthe-

less, as we show in Section 8.4, the Everett interpretation is at stake. Hence

a new view of the quantum world is needed. For a hint see (Dugić et al 2012).

76See e.g. (Bassi et al 2013).
77This means that the Bohmian theories are not ”deeper” than the standard quantum

mechanical theory.
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8.6.2 Completing the picture

Now, the unifying picture of Section 8.3.3 may be extended by the phrase:

”There are particles neither on the most fundamental, i.e. on the ontological,

physical level nor on the level of the Universe decompositions (structures).

All that we can assume is a fundamental quantum field, whose states can be

[non-relativistically] described by different decompositions of the Universe and

their local, decoherence-defined structures.”

While this picture may seem pessimistic, it is not necessarily so. Actually, we

do not think that ontological existence of the Universe, seen as a fundamental

physical quantum field, should be considered to be non-realistic. Such an

option (Vedral 2010) is essentially an additional condition, which is absent

from the universally valid quantum theory.
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Chapter 9

Outlook and Prospects

In Chapter 1 we posed the questions that are worth repeating: Is there

unique fundamental structure of a composite quantum system? How do the

classical structures (and intuition) appear from the quantum substrate? Can

the structural variations be of any practical use that is not known to the

classical physics wisdom?

Issued answers are partial–some answers imply another questions, which nev-

ertheless sharpen our view of the quantum world. The only assumption of

our considerations is the universal validity of quantum mechanics–for an iso-

lated (closed) quantum system we assume validity of the Schrödinger law.

The recently provided technical tools we introduce and use are as follows:

(a) Quantum correlations relativity (Section 3.2); (b) Parallel occurrence of

decoherence for the quantum Brownian motion model (Section 6.3); (c) Pre-

ferred local structures for bipartite decompositions (Section 7.2 and 7.3).

Those are the corollaries of the universally valid quantum mechanics.

In Chapters 6 and 8, we found the classical intuition (emphasized in Section

2.1) ”mechanistic”–structure is a fundamental and ontological notion that

precludes a deeper physical analysis of certain structural variations. How-

ever, in the quantum context it seems that there is not any reason to claim

existence of the ontologically unique structure of the Universe. Even more,

there may be more than one structure that bears the decoherence-induced

classicality. In other words: there may be more than one classical world (a
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structure) hosted by one and only one, unique quantum Universe. For every

such quasiclassical world, classical intuition (Section 2.1) is justified as a local

rule, which does not preclude reality of the alternative worlds and their local

(internal), quasiclassical structures and physical laws. Parallel occurrence of

decoherence is conjectured (Conjecture 1, Section 6.4) for all linear models.

Whether this conjecture can be justified, and probably extended to the more

general models of the many-particle systems, remains an open question of

our considerations.

An observer belongs to one and only one such world and can only partly ob-

serve the alternative quantum worlds. From a set of the possible local struc-

tures of a composite system, the environment chooses the preferred structure,

Conjecture 2 (Section 7.4). This structure can be directly observable (acces-

sible, Def.5.1) for an observer. In effect, the preferred structure of an open

composite system can be considered to be ”objective” and ”realistic” for the

observer. The choice of the preferred local structure of a composite system

cannot be provided on the purely theoretical basis–some phenomenological

facts are needed. Occurrence of decoherence should be equipped with another

theoretical tools, which, as yet we can only speculate about. To this end, we

introduce the assumption, that the minimum quantum correlations should be

required for ”classicality” (Arsenijević et al 2012, Harshman 2012a), which

also opens the following speculation. May it be the case that ”classicality” is

mainly a matter of structure–i.e. that structural studies may provide a basic

clue for answering the long-standing problem of the transition from quantum

to classical; compare to (Ragy and Adesso 2012)? Needless to say, this new

perspective offers a basis for a brand new approach to some old foundational

questions in non-relativistic quantum theory.

Quantum interpretation studies provide a unique lecture: ”classicality”, as we

usually see or feel it, may be idealized. Once we better understand ”classical-

ity”, we might be in a better position to perceive and eventually to solve the

long standing problem of quantum measurement. To this end, the quantum
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structures studies may nontrivially help, as we already know that ”system”,

locality and correlations–are relative, i.e. the structure-dependent concepts.

Unfortunately, [as emphasized above], quantum formalism seems to be much

richer than we might ever need. So there does not seem to be any other

way but to refer to phenomenology (e.g. to the decoherence and quantum

information phenomenology) as a precursor as well as to validate our theories.

Experimental evidence, even more, the use, of entanglement relativity, we

believe, is a precursor for the new and exciting applications that will emerge

from the quantum structure studies.
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Jeknić-Dugić J., Dugić M., 2008, Multiple System-Decomposition Method

131



for Avoiding Quantum Decoherence. Chin. Phys. Lett. 25, 371
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Mendaš I. P., Popović D. B., 2010, A generalization of the Baker-Hausdorff

lemma Phys. Scr. 82, 045007

Modi K., Brodutch A., Cable H., Paterek T., Vedral V., 2011, Quantum

discord and other measures of quantum correlation arXiv:1112.6238v1

[quant-ph].

Nakajima S., 1958, On quantum theory of transport phenomena. Prog.

Theor. Phys. 20, 948

Ollivier H., Zurek W. H., 2001, Quantum Discord: A Measure of the

Quantumness of Correlations. Phys. Rev. Lett. 88, 017901

Paz J. P., Roncaglia A. J., 2008, Dynamics of the Entanglement between

Two Oscillators in the Same Environment. Phys. Rev. Lett. 100, 220401

Peres A. 2000, Delayed choice for entanglement swapping. J. Mod. Opt. 47,

139

Primas H., 1994, in Logic, Methodology and Philosophy of Science IX, D.

Prawitz et al (Eds.). Elsevier Science, Singapore

Pusey M. F., Barrett J., Rudolph T., 2012. On the reality of the quantum

state, Nature Phys. 8, 476

Ragy S., Adesso G. 2012, Nature of light correlations in ghost imaging, Sci.

Rep. 2, 651

Rau A. V., Dunningham J. A., Burnett K., 2003, Measurement-induced

relative-position localization through entanglement. Science 301, 1081

Rivas A., Huelga S. F., Plenio M. B., 2010a, Entanglement and

133



Non-Markovianity of Quantum Evolutions. Phys. Rev. Lett. 105, 050403

Rivas A., Douglas A., Plato K., Huelga S. F., Plenio M. B., 2010b,

Markovian master equations: a critical study. New J. Phys. 12, 113032

Rodriguez-Rosario C. A., Sudarshan E. C. G., 2011, Non-Markovian Open

Quantum Ssstems: System-environment Correlations in Dynamical Maps.

Int. J. Quantum Inf. 9, 1617

Saunders S., Barret J., Kent A., Wallace D., (Eds.), 2010, Many Worlds?

Everett, Quantum Theory, and Reality. Oxford University Press, Oxford

Salih H., Li Z.-H., Al-Amri, Suhail Zubairy M. S., 2013, Protocol for direct

counterfactual quantum communication. Phys.Rev.Lett.110, 170502

Schlosshauer M., 2004, Decoherence, the measurement problem, and

interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267

Stokes A., 2012, Noncovariant gauge fixing in the quantum Dirac field

theory of atoms and molecules. Phys. Rev. A 86, 012511

Stokes A., Kurcz A., Spiller T. P., Beige A., 2012, Extending the validity

range of quantum optical master equations. Phys. Rev. A 85, 053805
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Supplement

This Supplement serves to complete and partially extend the contents of the

body text.

S.1 Decoherence preferred states and observables

The ”orthodox” approach to decoherence deals directly with the unitary oper-

ator of time evolution for the composite system ”(open)system+environment”

(S + E),

U = e−ıtH/h̄, (149)

where the total system’s Hamiltonian:

H = HS +HE +HSE. (150)

If the self-Hamiltonians, HS, HE, can be neglected (e.g. in the collisional

decoherence), then the total-system’s (pure) state evolves, approximately, as:

e−ıtHSE/h̄|ψ〉S|χ〉E =
∑

i

ci|φi〉S|χi(t)〉E. (151)

In eq.(151): |φi〉S is a basis diagonalizing the interaction term, HSE, and the

precise form of the |χi(t〉E) depends of the form of HSE.

It can be shown that eq.(151) cannot be valid, in principle, if the interaction is

not of the so-called separable kind (Dugić 1996, 1997), which, in turn, can be

always diagonalized by an orthonormalized basis in the system’s Hilbert state

space, HS. However, whenever such basis exists [and need not be unique],

the states |φi〉S diagonalizing HSE represent the ”pointer basis” states for the

S system–the carriers of the quasi-classical behavior of the open system S.

If the interaction HSE is only approximately of the separable-kind, then there

exists a not-necessarily-exactly orthonormalized basis, which approximately

diagonalizes HSE. Such a basis represents the approximate pointer basis

states–the ”preferred” set of states carrying the quasiclassical behavior of S.
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For the continuous-variable systems, the minimal-uncertainty gaussian states

(the Sudarshan-Glauber coherent states) are typical ”preferred” states [see

Chapters 6 and 7].

Whenever the self-Hamiltonians cannot be neglected, non-commutativity [HS,

HSE] 6= 0 does not allow a choice of the exact pointer basis states. Then read-

ing out the spectral form of the [separable kind] interaction HSE can point

out the candidates for the approximate pointer basis. There are the cases

not allowing existence of any ”preferred” states for the open system (Dugić

1996, 1997).

Formally, the spectral form of the interaction provides information about the

pointer basis:

HSE =
∑

i,j

hijPSi ⊗ ΠEj [exact pointer basis]

HSE =
∑

i,j

hijPSi ⊗ ΠEj +H ′, ‖H ′‖ ≪ ‖HSE‖ [approx− pointer− basis]

[HS, HSE] 6= 0 [approximate or no pointer basis]. (152)

S.2 The continuous-variable-system transformations

The center-of-mass and the relative positions

For a pair of one-dimensional particles see eq.(4) in the body text. Gener-

alization to realistic three-dimensional particles is straightforward. Here we

consider a many-particles system78.

There are formally similar, not yet equivalent, variants of the relative po-

sitions (R) variables. Here we adopt the following definitions as a direct

generalization of eq.(4) in the body text:

~RCM =

∑

imi~ri
∑

imi
, ~ρRl = ~ri − ~rj, (i, j) ≡ l = 1, 2, 3, ..., N − 1. (153)

78For further details and some proofs see e.g. McWeeney 1978.
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Eq.(153) gives rise to the following transformations of the kinetic terms:

∑

i

~p2i
2mi

→
~P 2
CM

2M
+
∑

i

~p2Ri

2µi
+
∑

i,j

mi+1mj+1

mimjM
~pRi · ~pRj (154)

In eq.(154): M =
∑

imi, the reduced masses, µi = mi+1(M − mi+1)/M ,

while [XCMi, PCMj] = ıh̄δij, and analogously for the R system’s variables. Of

course, then the total system’s Hilbert state space factorizes as HCM ⊗HR;

HR = ⊗N−1
i=1 HRi. The third term in eq.(154) is the so-called ”mass polariza-

tion” term which, for i 6= j, becomes internal interaction for the R system.

For the i = j, the mass polarization term gives rise to the following contri-

bution to the kinetic energy of the ith ”relative particle”:
∑

im
2
i+1p

2
Ri/m

2
iM ,

which will further be neglected.

The inverse to eq.(153) gives rise to:

~ri = ~RCM +
∑

j

ωij~ρRj (155)

with the real parameters ω. Then the distant-dependent interactions:

V (|~ri − ~rj|) = V (|~ρRl|) (156)

become the external fields for the R system. However, interestingly enough,

the external one-particle field:

V (~ri) = V (~RCM +
∑

j

ωij~ρRj) (157)

becomes the interaction between the CM and R systems.

Regarding the molecules model, eq.(48), the atomic-nuclei RN subsystem is

divided into two subsystems, the RotN (rotation of the atomic nuclei system

as a whole described by the Euler angles) and KN (the conformation system).

The kinetic term for rotation TRotN = ~L2
N/2IN , where

~LN is the molecule
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angular momentum and IN is the moment of inertia [in the simplest form].

The kinetic term TKN
is of the standard form eq.(154) for the remaining

”relative positions” variables.

Regarding the QBM model, eq.(66), the LCTs give rise to the terms propor-

tional to X2
CM and to ρRlρRl′, while there is the bi-linear coupling XCM

∑

i κi
∑

l ωilρRl. So, even for the original free particle model, the new structure

provides the harmonic-oscillator Brownian particle S ′ (S ′ ≡ CM). The

above terms ρRlρRl′ give for l = l′ the additional terms ρ2Rl thus providing

a harmonic term for the new environment. On the other hand, the origi-

nal harmonic term (for the Brownian particle and/or for the environment),

~r2i = (~RCM +
∑

j ωij~ρRj)
2, thus providing the harmonic terms for both the

new Brownian particle as well as for the new environment, and the bilinear

coupling, XCMiρRj, which directly gives rise to the coupling in eq.(70).

Regarding the quantum reference system, the expression eq.(156) is not ap-

plicable. The reason is rather simple. For the 1 system as a QRF system:

the relative positions ~ρRl = ~r1 − ~rl. But then V (|~ri − ~rj|) = V (|
∑

l ωil~ρRl −
∑

l′ ωjl′~ρRl′|) for i, j 6= 1, in contrast to eq.(156).

Building the boson Fock space

For a single harmonic oscillator described by the canonical position and mo-

mentum, x and p, with the mass m and frequency ω, one can introduce the

”annihilation” and the ”creation” operators:

a =

√

mω

2h̄
(x+

ı

mω
p), a† =

√

mω

2h̄
(x− ı

mω
p), (158)

with the commutation relation:

[a, a†] = I. (159)
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The inverse to eq.(158):

x =

√

h̄

2mω
(a+ a†), p = ı

√

mωh̄

2
(a† − a). (160)

The Hermitian operator N ≡ a†a defines the eigenstates:

N |n〉 = n|n〉, n = 0, 1, 2, 3, ... (161)

The states {|n〉} constitute an orthonormalized basis in the so-called Fock

space, HF . The equalities hold:

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉, (162)

from which:

|n〉 = a†n√
n!
|0〉, a|0〉 = 0; 〈0|0〉 = 1, (163)

In wide use (especially in quantum optics) are the so-called quadratures (Her-

mitian) operators defined as X =
√

mω/h̄x and P =
√

1/mh̄ωp.

Generalization to the many-particle (multimode) system is straightforward:

(xi, pi) → (ai, a
†
i), so that [ai, a

†
j] = δij. Then the total system’s Fock space

HF = ⊗iHFi, where HFi is the Fock space for individual oscillators (modes).

The eigenbasis of N =
∑

iNi, {|n〉 = ⊗i|ni〉}, Ni|ni〉 = ni|ni〉, while ni =
0, 1, 2, ..., ∀i. For the vacuum state, |0〉 = ⊗i|0〉i, ai|0〉 = 0, ∀i.

The Bogoliubov-like transformations

For one mode (or one harmonic oscillator) defined on appropriate Fock space

HF , a pair of the ”annihilation” and ”creation” operators are defined by the

commutator relation eq.(159).

The one-mode boson-translation transformation is defined by:

a→ a(θ) = a+ θ, θ ∈ C. (164)

143



This is a canonical transformation as

[a(θ), a†(θ)] = I, ∀θ. (165)

It can be shown this is an unitary transformation. However, this transforma-

tion does not preserve the original Fock space as:

a(θ)|0〉 = θ|0〉 6= 0. (166)

Therefore, the new vacuum state, |0(θ)〉, is the vacuum state of another Fock

space, H′F , which is unitary related to the original one.

For a single mode, the Bogoliubov transformation is defined as:

b = ua+ va†, b† = u∗a† + v∗a, (167)

where [a, a†] = 1 allows for the new bosonic operators [b, b†] = 1 if |u|2−|v|2 =
1. The later condition allows for the following parametrization: u = eıθ1 cosh r

and v = eıθ2 sinh r.

For the fermion system there are analogous transformations with the con-

dition |u|2 + |v|2 = 1, i.e. with the parametrization: u = eıθ1 cos r and

v = eıθ2 sin r.

The multimode generalization is straightforward. e.g. For the boson system,

for which ai|0〉 = 0, ∀i, the operators:

a′i =
∑

j

(uijaj + vija
†
j) (168)

satisfy the bosonic commutator relations, [a′i, a
′†
j ] = δij, if the condition,

∑

p(uipu
∗
jp − vipv

∗
jp) = 1, is fulfilled. For the fermion system, the analogous

condition reads as:
∑

p(uipu
∗
jp + vipv

∗
jp) = 1.
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S.3 Some spin-system related transformations

Below, we consider nontrivial79 transformations of variables.

The Holstein-Primakoff transformation targets the spin observable ~S (of the

spin quantum number s) with the standard basis |s,ms〉; ms = −s,−s +
1,−s + 2, , ...s − 2, s − 1, s. The leading idea of the transformation is the

following correspondence:

|s,−s+ n〉 → (n!)−1/2a†n|0〉 (169)

where appear the bosonic creation operator a† and the vaccum state |0〉.
Then the transformation is defined by the following prescription:

Sz = h̄(s− a†a), S+ = h̄
√

2s− a†aa, S+ = h̄a†
√

2s− a†a. (170)

Given the standard spin commutator relations, [Si, Sj] = ıh̄ǫijkSk, the bosonic

commutator relation is satisfied, [a, a†] = I. Generalization to a system of

spins (i.e. to a multimode prescription) is straightforward.

The Jordan-Wigner transformation exhibits important prescription between

the one-dimensional spin-1/2 chain and a fermion system. If ~Si distinguishes

a set of N one-dimensional-chain of spins, the spin projections Siα, i =

1, 2, ...N, α = x, y, z, allows introduction of the fermionic annihilation and

creation opperators as:

ai = (−2)i−1S1zS2z...S(i−1)zSi− ⇔ Sjz = a†jaj − 1/2, (171)

while S− = Sx + ıSy and {ai, a†j} = δij.

Fourier transform for fermion system connects mutually the two sets of

fermion operators. Consider the fermion operators ai and a
†
i that are trans-

79By ”trivial” transformations, we assume regrouping, fine- or coarse-graining of the
constituent particles.
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formed as:

βm =
∑

i

dmiai. (172)

For the N -fermions system, if chosen

dmi =

√

2

N + 1
sin kj, k =

nπ

N + 1
, n = 1, 2, ..., N, (173)

then the anticommutator relations are satisfied:

{βm, β†n} = δmn. (174)
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